Homogenization of a boundary condition for the heat equation
Journal of the European Mathematical Society, Tome 2 (2000) no. 3, pp. 217-258.

Voir la notice de l'article provenant de la source EMS Press

Abstract. An asymptotic analysis is given for the heat equation with mixed boundary conditions rapidly oscillating between Dirichlet and Neumann type. We try to present a general framework where deterministic homogenization methods can be applied to calculate the second term in the asymptotic expansion with respect to the small parameter characterizing the oscillations.
DOI : 10.1007/s100970000022
Classification : 35-XX, 00-XX
Keywords:
@article{JEMS_2000_2_3_a1,
     author = {J\'an Filo and Stephan Luckhaus},
     title = {Homogenization of a boundary condition for the heat equation},
     journal = {Journal of the European Mathematical Society},
     pages = {217--258},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2000},
     doi = {10.1007/s100970000022},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970000022/}
}
TY  - JOUR
AU  - Ján Filo
AU  - Stephan Luckhaus
TI  - Homogenization of a boundary condition for the heat equation
JO  - Journal of the European Mathematical Society
PY  - 2000
SP  - 217
EP  - 258
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s100970000022/
DO  - 10.1007/s100970000022
ID  - JEMS_2000_2_3_a1
ER  - 
%0 Journal Article
%A Ján Filo
%A Stephan Luckhaus
%T Homogenization of a boundary condition for the heat equation
%J Journal of the European Mathematical Society
%D 2000
%P 217-258
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s100970000022/
%R 10.1007/s100970000022
%F JEMS_2000_2_3_a1
Ján Filo; Stephan Luckhaus. Homogenization of a boundary condition for the heat equation. Journal of the European Mathematical Society, Tome 2 (2000) no. 3, pp. 217-258. doi : 10.1007/s100970000022. http://geodesic.mathdoc.fr/articles/10.1007/s100970000022/

Cité par Sources :