Homogenization of a boundary condition for the heat equation
Journal of the European Mathematical Society, Tome 2 (2000) no. 3, pp. 217-258
Cet article a éte moissonné depuis la source EMS Press
Abstract. An asymptotic analysis is given for the heat equation with mixed boundary conditions rapidly oscillating between Dirichlet and Neumann type. We try to present a general framework where deterministic homogenization methods can be applied to calculate the second term in the asymptotic expansion with respect to the small parameter characterizing the oscillations.
@article{JEMS_2000_2_3_a1,
author = {J\'an Filo and Stephan Luckhaus},
title = {Homogenization of a boundary condition for the heat equation},
journal = {Journal of the European Mathematical Society},
pages = {217--258},
year = {2000},
volume = {2},
number = {3},
doi = {10.1007/s100970000022},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970000022/}
}
TY - JOUR AU - Ján Filo AU - Stephan Luckhaus TI - Homogenization of a boundary condition for the heat equation JO - Journal of the European Mathematical Society PY - 2000 SP - 217 EP - 258 VL - 2 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s100970000022/ DO - 10.1007/s100970000022 ID - JEMS_2000_2_3_a1 ER -
Ján Filo; Stephan Luckhaus. Homogenization of a boundary condition for the heat equation. Journal of the European Mathematical Society, Tome 2 (2000) no. 3, pp. 217-258. doi: 10.1007/s100970000022
Cité par Sources :