On a stratification of the moduli of K3 surfaces
Journal of the European Mathematical Society, Tome 2 (2000) no. 3, pp. 259-290
Voir la notice de l'article provenant de la source EMS Press
In this paper we give a characterization of the height of K3 surfaces in characteristic p>0. This enables us to calculate the cycle classes in families of K3 surfaces of the loci where the height is at least h. The formulas for such loci can be seen as generalizations of the famous formula of Deuring for the number of supersingular elliptic curves in characteristic p. In order to describe the tangent spaces to these loci we study the first cohomology of higher closed forms.
@article{JEMS_2000_2_3_a2,
author = {Gerard van der Geer and Toshiyuki Katsura},
title = {On a stratification of the moduli of {K3} surfaces},
journal = {Journal of the European Mathematical Society},
pages = {259--290},
publisher = {mathdoc},
volume = {2},
number = {3},
year = {2000},
doi = {10.1007/s100970000021},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970000021/}
}
TY - JOUR AU - Gerard van der Geer AU - Toshiyuki Katsura TI - On a stratification of the moduli of K3 surfaces JO - Journal of the European Mathematical Society PY - 2000 SP - 259 EP - 290 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s100970000021/ DO - 10.1007/s100970000021 ID - JEMS_2000_2_3_a2 ER -
%0 Journal Article %A Gerard van der Geer %A Toshiyuki Katsura %T On a stratification of the moduli of K3 surfaces %J Journal of the European Mathematical Society %D 2000 %P 259-290 %V 2 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s100970000021/ %R 10.1007/s100970000021 %F JEMS_2000_2_3_a2
Gerard van der Geer; Toshiyuki Katsura. On a stratification of the moduli of K3 surfaces. Journal of the European Mathematical Society, Tome 2 (2000) no. 3, pp. 259-290. doi: 10.1007/s100970000021
Cité par Sources :