A new proof of Fréchet differentiability of Lipschitz functions
Journal of the European Mathematical Society, Tome 2 (2000) no. 3, pp. 199-216.

Voir la notice de l'article provenant de la source EMS Press

Abstract. We give a relatively simple (self-contained) proof that every real-valued Lipschitz function on Ê2 (or more generally on an Asplund space) has points of Fréchet differentiability. Somewhat more generally, we show that a real-valued Lipschitz function on a separable Banach space has points of Fréchet differentiability provided that the w* closure of the set of its points of Gâteaux differentiability is norm separable.
DOI : 10.1007/s100970000019
Classification : 46-XX, 58-XX, 00-XX
Keywords:
@article{JEMS_2000_2_3_a0,
     author = {Joram Lindenstrauss and David Preiss},
     title = {A new proof of {Fr\'echet} differentiability of {Lipschitz} functions},
     journal = {Journal of the European Mathematical Society},
     pages = {199--216},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2000},
     doi = {10.1007/s100970000019},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970000019/}
}
TY  - JOUR
AU  - Joram Lindenstrauss
AU  - David Preiss
TI  - A new proof of Fréchet differentiability of Lipschitz functions
JO  - Journal of the European Mathematical Society
PY  - 2000
SP  - 199
EP  - 216
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s100970000019/
DO  - 10.1007/s100970000019
ID  - JEMS_2000_2_3_a0
ER  - 
%0 Journal Article
%A Joram Lindenstrauss
%A David Preiss
%T A new proof of Fréchet differentiability of Lipschitz functions
%J Journal of the European Mathematical Society
%D 2000
%P 199-216
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s100970000019/
%R 10.1007/s100970000019
%F JEMS_2000_2_3_a0
Joram Lindenstrauss; David Preiss. A new proof of Fréchet differentiability of Lipschitz functions. Journal of the European Mathematical Society, Tome 2 (2000) no. 3, pp. 199-216. doi : 10.1007/s100970000019. http://geodesic.mathdoc.fr/articles/10.1007/s100970000019/

Cité par Sources :