Random walks on finite rank solvable groups
Journal of the European Mathematical Society, Tome 5 (2003) no. 4, pp. 313-342.

Voir la notice de l'article provenant de la source EMS Press

We establish the lower bound p2t(e,e)scapexp(-t1/3), for the large times asymptotic behaviours of the probabilities p2t(e,e) of return to the origin at even times 2t, for random walks associated with finite symmetric generating sets of solvable groups of finite Prüfer rank. (A group has finite Prüfer rank if there is an integer r, such that any of its finitely generated subgroup admits a generating set of cardinality less or equal to r.)
DOI : 10.1007/s10097-003-0054-4
Classification : 20-XX, 60-XX, 82-XX, 00-XX
Keywords: random walk, heat kernel decay, asymptotic invariants of infinite groups, Prüfer rank, solvable group
@article{JEMS_2003_5_4_a0,
     author = {Christophe Pittet and Laurent Saloff-Coste},
     title = {Random walks on finite rank solvable groups},
     journal = {Journal of the European Mathematical Society},
     pages = {313--342},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2003},
     doi = {10.1007/s10097-003-0054-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10097-003-0054-4/}
}
TY  - JOUR
AU  - Christophe Pittet
AU  - Laurent Saloff-Coste
TI  - Random walks on finite rank solvable groups
JO  - Journal of the European Mathematical Society
PY  - 2003
SP  - 313
EP  - 342
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10097-003-0054-4/
DO  - 10.1007/s10097-003-0054-4
ID  - JEMS_2003_5_4_a0
ER  - 
%0 Journal Article
%A Christophe Pittet
%A Laurent Saloff-Coste
%T Random walks on finite rank solvable groups
%J Journal of the European Mathematical Society
%D 2003
%P 313-342
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10097-003-0054-4/
%R 10.1007/s10097-003-0054-4
%F JEMS_2003_5_4_a0
Christophe Pittet; Laurent Saloff-Coste. Random walks on finite rank solvable groups. Journal of the European Mathematical Society, Tome 5 (2003) no. 4, pp. 313-342. doi : 10.1007/s10097-003-0054-4. http://geodesic.mathdoc.fr/articles/10.1007/s10097-003-0054-4/

Cité par Sources :