Upper bounds on the length of a shortest closed geodesic and quantitative Hurewicz theorem
Journal of the European Mathematical Society, Tome 5 (2003) no. 3, pp. 203-244.

Voir la notice de l'article provenant de la source EMS Press

In this paper we present two upper bounds on the length of a shortest closed geodesic on compact Riemannian manifolds. The first upper bound depends on an upper bound on sectional curvature and an upper bound on the volume of the manifold. The second upper bound will be given in terms of a lower bound on sectional curvature, an upper bound on the diameter and a lower bound on the volume. The related questions that will also be studied are the following: given a contractible k-dimensional sphere in Mn, how fast can this sphere be contracted to a point, if pgri(Mn)={0} for 1lei
DOI : 10.1007/s10097-003-0051-7
Classification : 53-XX, 00-XX
Keywords:
@article{JEMS_2003_5_3_a0,
     author = {Alexander Nabutovsky and Regina Rotman},
     title = {Upper bounds on the length of a shortest closed geodesic and quantitative {Hurewicz} theorem},
     journal = {Journal of the European Mathematical Society},
     pages = {203--244},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2003},
     doi = {10.1007/s10097-003-0051-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10097-003-0051-7/}
}
TY  - JOUR
AU  - Alexander Nabutovsky
AU  - Regina Rotman
TI  - Upper bounds on the length of a shortest closed geodesic and quantitative Hurewicz theorem
JO  - Journal of the European Mathematical Society
PY  - 2003
SP  - 203
EP  - 244
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10097-003-0051-7/
DO  - 10.1007/s10097-003-0051-7
ID  - JEMS_2003_5_3_a0
ER  - 
%0 Journal Article
%A Alexander Nabutovsky
%A Regina Rotman
%T Upper bounds on the length of a shortest closed geodesic and quantitative Hurewicz theorem
%J Journal of the European Mathematical Society
%D 2003
%P 203-244
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10097-003-0051-7/
%R 10.1007/s10097-003-0051-7
%F JEMS_2003_5_3_a0
Alexander Nabutovsky; Regina Rotman. Upper bounds on the length of a shortest closed geodesic and quantitative Hurewicz theorem. Journal of the European Mathematical Society, Tome 5 (2003) no. 3, pp. 203-244. doi : 10.1007/s10097-003-0051-7. http://geodesic.mathdoc.fr/articles/10.1007/s10097-003-0051-7/

Cité par Sources :