Minimal, rigid foliations by curves on $\mathbb{CP}^n$
Journal of the European Mathematical Society, Tome 5 (2003) no. 2, pp. 147-201
Cet article a éte moissonné depuis la source EMS Press
We prove the existence of minimal and rigid singular holomorphic foliations by curves on the projective space CPn for every dimension n≥2 and every degree d≥2. Precisely, we construct a foliation F which is induced by a homogeneous vector field of degree d, has a finite singular set and all the regular leaves are dense in the whole of CPn. Moreover, F satisfies many additional properties expected from chaotic dynamics and is rigid in the following sense: if F is conjugate to another holomorphic foliation by a homeomorphism sufficiently close to the identity, then these foliations are also conjugate by a projective transformation. Finally, all these properties are persistent for small perturbations of F.
@article{JEMS_2003_5_2_a2,
author = {Frank Loray and Julio C. Rebelo},
title = {Minimal, rigid foliations by curves on $\mathbb{CP}^n$},
journal = {Journal of the European Mathematical Society},
pages = {147--201},
year = {2003},
volume = {5},
number = {2},
doi = {10.1007/s10097-002-0049-6},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10097-002-0049-6/}
}
TY - JOUR
AU - Frank Loray
AU - Julio C. Rebelo
TI - Minimal, rigid foliations by curves on $\mathbb{CP}^n$
JO - Journal of the European Mathematical Society
PY - 2003
SP - 147
EP - 201
VL - 5
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10097-002-0049-6/
DO - 10.1007/s10097-002-0049-6
ID - JEMS_2003_5_2_a2
ER -
%0 Journal Article
%A Frank Loray
%A Julio C. Rebelo
%T Minimal, rigid foliations by curves on $\mathbb{CP}^n$
%J Journal of the European Mathematical Society
%D 2003
%P 147-201
%V 5
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10097-002-0049-6/
%R 10.1007/s10097-002-0049-6
%F JEMS_2003_5_2_a2
Frank Loray; Julio C. Rebelo. Minimal, rigid foliations by curves on $\mathbb{CP}^n$. Journal of the European Mathematical Society, Tome 5 (2003) no. 2, pp. 147-201. doi: 10.1007/s10097-002-0049-6
Cité par Sources :