Endomorphisms of symbolic algebraic varieties
Journal of the European Mathematical Society, Tome 1 (1999) no. 2, pp. 109-197.

Voir la notice de l'article provenant de la source EMS Press

The theorem of Ax says that any regular selfmapping of a complex algebraic variety is either surjective or non-injective; this property is called surjunctivity and investigated in the present paper in the category of proregular mappings of proalgebraic spaces. We show that such maps are surjunctive if they commute with sufficiently large automorphism groups. Of particular interest is the case of proalgebraic varieties over infinite graphs. The paper intends to bring out relations between model theory, algebraic geometry, and symbolic dynamics.
DOI : 10.1007/pl00011162
Classification : 14-XX, 00-XX
Keywords:
@article{JEMS_1999_1_2_a0,
     author = {Misha Gromov},
     title = {Endomorphisms of symbolic algebraic varieties},
     journal = {Journal of the European Mathematical Society},
     pages = {109--197},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1999},
     doi = {10.1007/pl00011162},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/pl00011162/}
}
TY  - JOUR
AU  - Misha Gromov
TI  - Endomorphisms of symbolic algebraic varieties
JO  - Journal of the European Mathematical Society
PY  - 1999
SP  - 109
EP  - 197
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/pl00011162/
DO  - 10.1007/pl00011162
ID  - JEMS_1999_1_2_a0
ER  - 
%0 Journal Article
%A Misha Gromov
%T Endomorphisms of symbolic algebraic varieties
%J Journal of the European Mathematical Society
%D 1999
%P 109-197
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/pl00011162/
%R 10.1007/pl00011162
%F JEMS_1999_1_2_a0
Misha Gromov. Endomorphisms of symbolic algebraic varieties. Journal of the European Mathematical Society, Tome 1 (1999) no. 2, pp. 109-197. doi : 10.1007/pl00011162. http://geodesic.mathdoc.fr/articles/10.1007/pl00011162/

Cité par Sources :