On the ideal class groups of the maximal real subfields of number fields with all roots of unity
Journal of the European Mathematical Society, Tome 1 (1999) no. 1, pp. 35-49
Voir la notice de l'article provenant de la source EMS Press
In this paper, for a totally real number field k we show the ideal class group of k(?n>07n)+ is trivial. We also study the p-component of the ideal class group of the cyclotomic Zp-extension.
@article{JEMS_1999_1_1_a2,
author = {Masato Kurihara},
title = {On the ideal class groups of the maximal real subfields of number fields with all roots of unity},
journal = {Journal of the European Mathematical Society},
pages = {35--49},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {1999},
doi = {10.1007/pl00011159},
url = {http://geodesic.mathdoc.fr/articles/10.1007/pl00011159/}
}
TY - JOUR AU - Masato Kurihara TI - On the ideal class groups of the maximal real subfields of number fields with all roots of unity JO - Journal of the European Mathematical Society PY - 1999 SP - 35 EP - 49 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/pl00011159/ DO - 10.1007/pl00011159 ID - JEMS_1999_1_1_a2 ER -
%0 Journal Article %A Masato Kurihara %T On the ideal class groups of the maximal real subfields of number fields with all roots of unity %J Journal of the European Mathematical Society %D 1999 %P 35-49 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/pl00011159/ %R 10.1007/pl00011159 %F JEMS_1999_1_1_a2
Masato Kurihara. On the ideal class groups of the maximal real subfields of number fields with all roots of unity. Journal of the European Mathematical Society, Tome 1 (1999) no. 1, pp. 35-49. doi: 10.1007/pl00011159
Cité par Sources :