On perturbation method for the first kind equations: regularization and application
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 2, pp. 69-80
Voir la notice de l'article provenant de la source Math-Net.Ru
One of the most common problems of scientific applications is computation of the derivative of a function specified by possibly noisy or imprecise experimental data. Application of conventional techniques for numerically calculating derivatives will amplify the noise making the result useless. We address this typical ill-posed problem by application of perturbation method to linear first kind equations $Ax=f$ with bounded operator $A.$ We assume that we know the operator $\tilde{A}$ and source function $\tilde{f}$ only such as $||\tilde{A} - A||\leq \delta,$ $||\tilde{f}-f|| \delta$, The regularizing equation $\tilde{A}x + B(\alpha)x = \tilde{f}$ possesses the unique solution. Here $\alpha \in S$, $S$ is assumed to be an open space in $\mathbb{R}^n$, $0 \in \overline{S}$, $\alpha= \alpha(\delta)$. As result of proposed theory, we suggest a novel algorithm providing accurate results even in the presence of a large amount of noise.
Keywords:
operator and integral equations of the first kind; stable differentiation; perturbation method, regularization parameter.
@article{VYURU_2015_8_2_a5,
author = {I. R. Muftahov and D. N. Sidorov and N. A. Sidorov},
title = {On perturbation method for the first kind equations: regularization and application},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {69--80},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_2_a5/}
}
TY - JOUR AU - I. R. Muftahov AU - D. N. Sidorov AU - N. A. Sidorov TI - On perturbation method for the first kind equations: regularization and application JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2015 SP - 69 EP - 80 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2015_8_2_a5/ LA - en ID - VYURU_2015_8_2_a5 ER -
%0 Journal Article %A I. R. Muftahov %A D. N. Sidorov %A N. A. Sidorov %T On perturbation method for the first kind equations: regularization and application %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2015 %P 69-80 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2015_8_2_a5/ %G en %F VYURU_2015_8_2_a5
I. R. Muftahov; D. N. Sidorov; N. A. Sidorov. On perturbation method for the first kind equations: regularization and application. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 2, pp. 69-80. http://geodesic.mathdoc.fr/item/VYURU_2015_8_2_a5/