On perturbation method for the first kind equations: regularization and application
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 2, pp. 69-80

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the most common problems of scientific applications is computation of the derivative of a function specified by possibly noisy or imprecise experimental data. Application of conventional techniques for numerically calculating derivatives will amplify the noise making the result useless. We address this typical ill-posed problem by application of perturbation method to linear first kind equations $Ax=f$ with bounded operator $A.$ We assume that we know the operator $\tilde{A}$ and source function $\tilde{f}$ only such as $||\tilde{A} - A||\leq \delta,$ $||\tilde{f}-f|| \delta$, The regularizing equation $\tilde{A}x + B(\alpha)x = \tilde{f}$ possesses the unique solution. Here $\alpha \in S$, $S$ is assumed to be an open space in $\mathbb{R}^n$, $0 \in \overline{S}$, $\alpha= \alpha(\delta)$. As result of proposed theory, we suggest a novel algorithm providing accurate results even in the presence of a large amount of noise.
Keywords: operator and integral equations of the first kind; stable differentiation; perturbation method, regularization parameter.
@article{VYURU_2015_8_2_a5,
     author = {I. R. Muftahov and D. N. Sidorov and N. A. Sidorov},
     title = {On perturbation method for the first kind equations: regularization and application},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {69--80},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_2_a5/}
}
TY  - JOUR
AU  - I. R. Muftahov
AU  - D. N. Sidorov
AU  - N. A. Sidorov
TI  - On perturbation method for the first kind equations: regularization and application
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2015
SP  - 69
EP  - 80
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2015_8_2_a5/
LA  - en
ID  - VYURU_2015_8_2_a5
ER  - 
%0 Journal Article
%A I. R. Muftahov
%A D. N. Sidorov
%A N. A. Sidorov
%T On perturbation method for the first kind equations: regularization and application
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2015
%P 69-80
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2015_8_2_a5/
%G en
%F VYURU_2015_8_2_a5
I. R. Muftahov; D. N. Sidorov; N. A. Sidorov. On perturbation method for the first kind equations: regularization and application. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 2, pp. 69-80. http://geodesic.mathdoc.fr/item/VYURU_2015_8_2_a5/