On the best approximation of some classes of~periodic~functions~in~the space $L_{2}$
Vestnik rossijskih universitetov. Matematika, Tome 30 (2025) no. 149, pp. 56-65

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the set $L_{2}^{(r)}$ of $2\pi$-periodic functions $f\in L_{2}$ whose $(r-1)$-th order derivative is absolutely continuous, and the $r$-th order derivative $f^{(r)}\in L_{2}.$ We solve the extremal problem of finding an exact Jackson–Stechkin type constant that connects the best polynomial approximation of functions from $L_{2}^{(r)}$ with the average value of the generalized $m$-th order modulus of continuity of their derivative $f^{(r)}$ in the space $L_{2}.$ We also consider the classes $W_{m}^{(r)}(u)$ and $W_{m}^{(r)}(u,\Phi)$ of functions from $L_{2}^{(r)}$ such that the average value of the generalized $m$-th order modulus of continuity of their derivative $f^{(r)}$ is bounded from above by unity and, accordingly, by the value of some function $\Phi(u).$ We calculate the exact values of the known $n$-widths (according to Bernstein, to Gelfand, to Kolmogorov, linear, and projection) of the class $W_{m}^{(r)}(u).$ Then we solve the extremal problem of finding the exact value of the best approximation for the class $W_{m}^{(r)}(u,\Phi).$ The obtained results develop and complement some known results on the best approximation of various classes of functions in $L_{2}.$ In the paper, we use methods for solving extremal problems in normed spaces, as well as the method developed by V. M. Tikhomirov for estimating from below the $n$-widths of functional classes in Banach spaces.
Keywords: best polynomial approximation in $L_{2},$ extremal characteristic — generalized modulus of continuity, $n$-widths
@article{VTAMU_2025_30_149_a4,
     author = {M. R. Langarshoev and S. S. Khorazmshoev},
     title = {On the best approximation of some classes of~periodic~functions~in~the space $L_{2}$},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {56--65},
     publisher = {mathdoc},
     volume = {30},
     number = {149},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a4/}
}
TY  - JOUR
AU  - M. R. Langarshoev
AU  - S. S. Khorazmshoev
TI  - On the best approximation of some classes of~periodic~functions~in~the space $L_{2}$
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2025
SP  - 56
EP  - 65
VL  - 30
IS  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a4/
LA  - ru
ID  - VTAMU_2025_30_149_a4
ER  - 
%0 Journal Article
%A M. R. Langarshoev
%A S. S. Khorazmshoev
%T On the best approximation of some classes of~periodic~functions~in~the space $L_{2}$
%J Vestnik rossijskih universitetov. Matematika
%D 2025
%P 56-65
%V 30
%N 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a4/
%G ru
%F VTAMU_2025_30_149_a4
M. R. Langarshoev; S. S. Khorazmshoev. On the best approximation of some classes of~periodic~functions~in~the space $L_{2}$. Vestnik rossijskih universitetov. Matematika, Tome 30 (2025) no. 149, pp. 56-65. http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a4/