On the best approximation of some classes of~periodic~functions~in~the space $L_{2}$
Vestnik rossijskih universitetov. Matematika, Tome 30 (2025) no. 149, pp. 56-65
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the set $L_{2}^{(r)}$ of $2\pi$-periodic functions $f\in L_{2}$ whose $(r-1)$-th order derivative is absolutely continuous, and the $r$-th order derivative $f^{(r)}\in L_{2}.$ We solve the extremal problem of finding an exact Jackson–Stechkin type constant that connects the best polynomial approximation of functions from $L_{2}^{(r)}$ with the average value of the generalized $m$-th order modulus of continuity of their derivative $f^{(r)}$ in the space $L_{2}.$ We also consider the classes $W_{m}^{(r)}(u)$ and $W_{m}^{(r)}(u,\Phi)$ of functions from $L_{2}^{(r)}$ such that the average value of the generalized $m$-th order modulus of continuity of their derivative $f^{(r)}$ is bounded from above by unity and, accordingly, by the value of some function $\Phi(u).$ We calculate the exact values of the known $n$-widths (according to Bernstein, to Gelfand, to Kolmogorov, linear, and projection) of the class $W_{m}^{(r)}(u).$ Then we solve the extremal problem of finding the exact value of the best approximation for the class $W_{m}^{(r)}(u,\Phi).$ The obtained results develop and complement some known results on the best approximation of various classes of functions in $L_{2}.$ In the paper, we use methods for solving extremal problems in normed spaces, as well as the method developed by V. M. Tikhomirov
for estimating from below the $n$-widths of functional classes in Banach spaces.
Keywords:
best polynomial approximation in $L_{2},$ extremal characteristic — generalized modulus of continuity, $n$-widths
@article{VTAMU_2025_30_149_a4,
author = {M. R. Langarshoev and S. S. Khorazmshoev},
title = {On the best approximation of some classes of~periodic~functions~in~the space $L_{2}$},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {56--65},
publisher = {mathdoc},
volume = {30},
number = {149},
year = {2025},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a4/}
}
TY - JOUR
AU - M. R. Langarshoev
AU - S. S. Khorazmshoev
TI - On the best approximation of some classes of~periodic~functions~in~the space $L_{2}$
JO - Vestnik rossijskih universitetov. Matematika
PY - 2025
SP - 56
EP - 65
VL - 30
IS - 149
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a4/
LA - ru
ID - VTAMU_2025_30_149_a4
ER -
%0 Journal Article
%A M. R. Langarshoev
%A S. S. Khorazmshoev
%T On the best approximation of some classes of~periodic~functions~in~the space $L_{2}$
%J Vestnik rossijskih universitetov. Matematika
%D 2025
%P 56-65
%V 30
%N 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a4/
%G ru
%F VTAMU_2025_30_149_a4
M. R. Langarshoev; S. S. Khorazmshoev. On the best approximation of some classes of~periodic~functions~in~the space $L_{2}$. Vestnik rossijskih universitetov. Matematika, Tome 30 (2025) no. 149, pp. 56-65. http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a4/