Radial stability and instability of differential system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2025), pp. 83-88

Voir la notice de l'article provenant de la source Math-Net.Ru

New concepts of radial and general radial stability, asymptotic stability, and complete instability of the zero solution of a differential system are introduced and studied. They turn out to be closely related to known similar properties of various types: Lyapunov, Perron and upper limit. Their connection with measures of these properties turns out to be especially meaningful.
@article{VMUMM_2025_2_a13,
     author = {I. N. Sergeev},
     title = {Radial stability and instability of differential system},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {83--88},
     publisher = {mathdoc},
     number = {2},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a13/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - Radial stability and instability of differential system
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2025
SP  - 83
EP  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a13/
LA  - ru
ID  - VMUMM_2025_2_a13
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T Radial stability and instability of differential system
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2025
%P 83-88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a13/
%G ru
%F VMUMM_2025_2_a13
I. N. Sergeev. Radial stability and instability of differential system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2025), pp. 83-88. http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a13/