On the invariant correspondence between the symmetric second-rank tensors and the vector systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2021), pp. 69-74
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss the possibilities of various representations of high-rank tensors in three-dimensional space using lower-rank tensors, in particular, the representations of second-rank tensors by vector fields. The purpose of these representations is a convenient geometric interpretation of certain mechanical properties of objects described by high-rank tensors. We propose an invariant correspondence of symmetric tensors of the second rank in three-dimensional space and pairs of vectors from the same space. On the basis of this correspondence, a geometric interpretation of the action of an isotropic symmetric tensor function of a tensor argument is given.
@article{VMUMM_2021_3_a10,
author = {D. V. Georgievskii},
title = {On the invariant correspondence between the symmetric second-rank tensors and the vector systems},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {69--74},
publisher = {mathdoc},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_3_a10/}
}
TY - JOUR AU - D. V. Georgievskii TI - On the invariant correspondence between the symmetric second-rank tensors and the vector systems JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2021 SP - 69 EP - 74 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2021_3_a10/ LA - ru ID - VMUMM_2021_3_a10 ER -
%0 Journal Article %A D. V. Georgievskii %T On the invariant correspondence between the symmetric second-rank tensors and the vector systems %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2021 %P 69-74 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2021_3_a10/ %G ru %F VMUMM_2021_3_a10
D. V. Georgievskii. On the invariant correspondence between the symmetric second-rank tensors and the vector systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2021), pp. 69-74. http://geodesic.mathdoc.fr/item/VMUMM_2021_3_a10/