Proximities for mappings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (1982), pp. 33-36

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notions of $m$-proximity and $\theta$-$m$-proximity for continuous mappings generalizing the notions of proximity due to Efremovich and $\theta$-proximity due to Fedorchuk. Then we study their connection with compactifications of continuous mappings.
@article{VMUMM_1982_4_a7,
     author = {V. P. Norin},
     title = {Proximities for mappings},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {33--36},
     publisher = {mathdoc},
     number = {4},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_4_a7/}
}
TY  - JOUR
AU  - V. P. Norin
TI  - Proximities for mappings
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 33
EP  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_4_a7/
LA  - ru
ID  - VMUMM_1982_4_a7
ER  - 
%0 Journal Article
%A V. P. Norin
%T Proximities for mappings
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 33-36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_4_a7/
%G ru
%F VMUMM_1982_4_a7
V. P. Norin. Proximities for mappings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (1982), pp. 33-36. http://geodesic.mathdoc.fr/item/VMUMM_1982_4_a7/