Complex powers of a differential operator related to the Schr\"odinger operator
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 18-25
Voir la notice de l'article provenant de la source Math-Net.Ru
We study complex powers of the generalized Schrödinger operator in $L_p({\mathbb R^{n+1}})$ with complex
coefficients in the principal part
\begin{equation}
S_{\bar{\lambda}}=m^2I+i b \frac{\partial}{\partial
x_{n+1}}+\sum\limits_{k=1}^n (1-i\lambda_k) \frac{\partial
^2}{\partial x_k^2}\tag{1}
\end{equation}
where $m>0$, $b>0$
$\bar{\lambda}=(\lambda_1,\ldots,\lambda_n)$, $\lambda_k>0$,
$1\leqslant k\leqslant n$. Complex powers of the operator
$S_{\bar{\lambda}}$ with negative real parts on «sufficiently
nice» functions $\varphi(x)$ are defined as multiplier operators,
whose action in the Fourier pre-images is reduced to multiplication by the corresponding
power of the symbol of the operator under consideration:
\begin{equation}
F\left((S_{\bar{\lambda}}^{-\alpha/2}\varphi\right)(\xi)=
\left((m^2+b\xi_{n+1}-|\xi'|^2+i\sum\limits_{k=1}^n\lambda_k
\xi_k^2\right)^{-\alpha/2}\widehat{\varphi}(\xi),\tag{2}
\end{equation}
where $\xi\in{\mathbb R^{n+1}}$, $\xi'=(\xi_1,\ldots,\xi_n)$,
$0{\rm{Re}}\,\alpha$. We obtain integral representations for complex powers (2)
as potential-type operators with non-standard metric.
The corresponding fractional potentials have the form
$H_{\bar{\lambda}}^{^\alpha} \varphi$. Complex powers
$S_{\bar{\lambda}}^{-\alpha/2}\varphi$,
$0{\rm{Re}}\,\alpha$,
are interpreted as distributions:
$$\langle S_{\bar{\lambda}}^{-\alpha/2}\varphi,\omega\rangle=
\langle\varphi,
\overline{S_{\bar{\lambda}}^{-\alpha/2}}\omega\rangle,\quad
\varphi\in \Phi,$$ where $\Phi$ is the Lizorkin space of functions
in $S$, whose Fourier transforms vanish on coordinate hyperplanes.
Within the framework of the method of approximative inverse operators we
describe the range $H_{\bar{\lambda}}^{^\alpha} (L_p)$, $1\leqslant p\frac{n+2}{{{\rm
Re\,}}\,\alpha}$. Recently a number of papers related to complex powers of
second order degenerating differential operator was published (see survey papers [1–3], and also
[6–11]). The case considered in our work is the most difficult,
because of non-standard expressions for the potentials $H_{\bar{\lambda}}^{^\alpha} \varphi$.
@article{VMJ_2017_19_1_a2,
author = {A. V. Gil and V. A. Nogin},
title = {Complex powers of a differential operator related to the {Schr\"odinger} operator},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {18--25},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a2/}
}
TY - JOUR AU - A. V. Gil AU - V. A. Nogin TI - Complex powers of a differential operator related to the Schr\"odinger operator JO - Vladikavkazskij matematičeskij žurnal PY - 2017 SP - 18 EP - 25 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a2/ LA - ru ID - VMJ_2017_19_1_a2 ER -
A. V. Gil; V. A. Nogin. Complex powers of a differential operator related to the Schr\"odinger operator. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 18-25. http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a2/