Local controllability and the boundary of the attainable set of a~control system
Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 273-291

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a control system of ordinary differential equations, the attainable set of trajectories admissible for it with respect to certain maps is defined. The aim of the work is to state necessary and sufficient conditions describing boundary points of this set. Interesting examples are considered, which illustrate the results obtained. Bibliography: 11 titles.
Keywords: control system, controllability, boundary of the attainable set.
@article{SM_2025_216_3_a2,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {Local controllability and the boundary of the attainable set of a~control system},
     journal = {Sbornik. Mathematics},
     pages = {273--291},
     publisher = {mathdoc},
     volume = {216},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2025_216_3_a2/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - Local controllability and the boundary of the attainable set of a~control system
JO  - Sbornik. Mathematics
PY  - 2025
SP  - 273
EP  - 291
VL  - 216
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2025_216_3_a2/
LA  - en
ID  - SM_2025_216_3_a2
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T Local controllability and the boundary of the attainable set of a~control system
%J Sbornik. Mathematics
%D 2025
%P 273-291
%V 216
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2025_216_3_a2/
%G en
%F SM_2025_216_3_a2
E. R. Avakov; G. G. Magaril-Il'yaev. Local controllability and the boundary of the attainable set of a~control system. Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 273-291. http://geodesic.mathdoc.fr/item/SM_2025_216_3_a2/