Local controllability and the boundary of the attainable set of a~control system
Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 273-291
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a control system of ordinary differential equations, the attainable set of trajectories admissible for it with respect to certain maps is defined. The aim of the work is to state necessary and sufficient conditions describing boundary points of this set. Interesting examples are considered, which illustrate the results obtained.
Bibliography: 11 titles.
Keywords:
control system, controllability, boundary of the attainable set.
@article{SM_2025_216_3_a2,
author = {E. R. Avakov and G. G. Magaril-Il'yaev},
title = {Local controllability and the boundary of the attainable set of a~control system},
journal = {Sbornik. Mathematics},
pages = {273--291},
publisher = {mathdoc},
volume = {216},
number = {3},
year = {2025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2025_216_3_a2/}
}
TY - JOUR AU - E. R. Avakov AU - G. G. Magaril-Il'yaev TI - Local controllability and the boundary of the attainable set of a~control system JO - Sbornik. Mathematics PY - 2025 SP - 273 EP - 291 VL - 216 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2025_216_3_a2/ LA - en ID - SM_2025_216_3_a2 ER -
E. R. Avakov; G. G. Magaril-Il'yaev. Local controllability and the boundary of the attainable set of a~control system. Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 273-291. http://geodesic.mathdoc.fr/item/SM_2025_216_3_a2/