On exponential algebraic geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 80 (2025) no. 1, pp. 1-49

Voir la notice de l'article provenant de la source Math-Net.Ru

The set of roots of any finite system of exponential sums in the space $\mathbb{C}^n$ is called an exponential variety. We define the intersection index of varieties of complementary dimensions, and the ring of classes of numerical equivalence of exponential varieties with operations ‘addition-union’ and ‘multiplication-intersection’. This ring is analogous to the ring of conditions of the torus $(\mathbb{C}\setminus 0)^n$ and is called the ring of conditions of $\mathbb{C}^n$. We provide its description in terms of convex geometry. Namely, we associate an exponential variety with an element of a certain ring generated by convex polytopes in $\mathbb{C}^n$. We call this element the Newtonization of the exponential variety. For example, the Newtonization of an exponential hypersurface is its Newton polytope. The Newtonization map defines an isomorphism of the ring of conditions to the ring generated by convex polytopes in $\mathbb{C}^n$. It follows, in particular, that the intersection index of $n$ exponential hypersurfaces is equal to the mixed pseudo-volume of their Newton polytopes. Bibliography: 32 titles.
Keywords: exponential variety, intersection index, ring of conditions, Newton polytope, mixed volume.
@article{RM_2025_80_1_a0,
     author = {B. Ya. Kazarnovskii},
     title = {On exponential algebraic geometry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--49},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2025_80_1_a0/}
}
TY  - JOUR
AU  - B. Ya. Kazarnovskii
TI  - On exponential algebraic geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2025
SP  - 1
EP  - 49
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2025_80_1_a0/
LA  - en
ID  - RM_2025_80_1_a0
ER  - 
%0 Journal Article
%A B. Ya. Kazarnovskii
%T On exponential algebraic geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2025
%P 1-49
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2025_80_1_a0/
%G en
%F RM_2025_80_1_a0
B. Ya. Kazarnovskii. On exponential algebraic geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 80 (2025) no. 1, pp. 1-49. http://geodesic.mathdoc.fr/item/RM_2025_80_1_a0/