Recent progress on quasi-periodic lattice Schr\"odinger operators and Hamiltonian PDEs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 2, pp. 231-246

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a survey of recent investigations of quasi-periodic localization on lattices (of both methods based on perturbation theory and non-perturbative methods) and of applications of KAM theories in connection with infinite-dimensional Hamiltonian systems. The focus is on applications of these investigations to the Schrödinger equation and the wave equation with periodic boundary conditions, and to non-linear random Schrödinger equations with short-range potentials.
@article{RM_2004_59_2_a2,
     author = {J. Bourgain},
     title = {Recent progress on quasi-periodic lattice {Schr\"odinger} operators and {Hamiltonian} {PDEs}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {231--246},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_2_a2/}
}
TY  - JOUR
AU  - J. Bourgain
TI  - Recent progress on quasi-periodic lattice Schr\"odinger operators and Hamiltonian PDEs
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 231
EP  - 246
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_2_a2/
LA  - en
ID  - RM_2004_59_2_a2
ER  - 
%0 Journal Article
%A J. Bourgain
%T Recent progress on quasi-periodic lattice Schr\"odinger operators and Hamiltonian PDEs
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 231-246
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2004_59_2_a2/
%G en
%F RM_2004_59_2_a2
J. Bourgain. Recent progress on quasi-periodic lattice Schr\"odinger operators and Hamiltonian PDEs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 2, pp. 231-246. http://geodesic.mathdoc.fr/item/RM_2004_59_2_a2/