Recent progress on quasi-periodic lattice Schr\"odinger operators and Hamiltonian PDEs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 2, pp. 231-246
Voir la notice de l'article provenant de la source Math-Net.Ru
This is a survey of recent investigations of quasi-periodic
localization on lattices (of both methods based on perturbation
theory and non-perturbative methods) and of applications of KAM
theories in connection with infinite-dimensional Hamiltonian
systems. The focus is on applications of these investigations to
the Schrödinger equation and the wave equation with periodic
boundary conditions, and to non-linear random Schrödinger
equations with short-range potentials.
@article{RM_2004_59_2_a2,
author = {J. Bourgain},
title = {Recent progress on quasi-periodic lattice {Schr\"odinger} operators and {Hamiltonian} {PDEs}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {231--246},
publisher = {mathdoc},
volume = {59},
number = {2},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_2_a2/}
}
TY - JOUR AU - J. Bourgain TI - Recent progress on quasi-periodic lattice Schr\"odinger operators and Hamiltonian PDEs JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 231 EP - 246 VL - 59 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2004_59_2_a2/ LA - en ID - RM_2004_59_2_a2 ER -
J. Bourgain. Recent progress on quasi-periodic lattice Schr\"odinger operators and Hamiltonian PDEs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 2, pp. 231-246. http://geodesic.mathdoc.fr/item/RM_2004_59_2_a2/