Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 3, pp. 473-510
Voir la notice de l'article provenant de la source Math-Net.Ru
Higher-rank solutions of the equations of the two-dimensionalized Toda lattice are constructed. The construction of these solutions is based on the theory of commuting difference operators, which is developed in the first part of the paper. It is shown that the problem of recovering the
coefficients of commuting operators can be effectively solved by means of the equations of the discrete dynamics of the Tyurin parameters characterizing the stable holomorphic vector bundles over an algebraic curve.
@article{RM_2003_58_3_a1,
author = {I. M. Krichever and S. P. Novikov},
title = {Two-dimensionalized {Toda} lattice, commuting difference operators, and holomorphic bundles},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {473--510},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2003_58_3_a1/}
}
TY - JOUR AU - I. M. Krichever AU - S. P. Novikov TI - Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2003 SP - 473 EP - 510 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2003_58_3_a1/ LA - en ID - RM_2003_58_3_a1 ER -
%0 Journal Article %A I. M. Krichever %A S. P. Novikov %T Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2003 %P 473-510 %V 58 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2003_58_3_a1/ %G en %F RM_2003_58_3_a1
I. M. Krichever; S. P. Novikov. Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 3, pp. 473-510. http://geodesic.mathdoc.fr/item/RM_2003_58_3_a1/