Wavefronts and reflection groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 43 (1988) no. 3, pp. 149-194

Voir la notice de l'article provenant de la source Math-Net.Ru

Typical singularities of wave fronts and ray systems passing by smooth obstacle in $3$-space are described in the article. These singularities turn out to be connected with noncristallographic Coxeter groups $I_2(5)$, $H_3$, $H_4$. Proofs are based on the detail in­vestigation of the discriminants of these groups by their inclusion into cristallographic ones $A_4$, $D_6$, $E_8$ correspondently. Besides, there is given a geometrical description of some singularities of bicaustics in collisionless flows of particles. It is based on inclu­sions of Coxeter groups $A_1^\mu$, $D_\mu$, $D_4$ into $B_\mu$, $G_\mu$, $F_4$ as normal subgroups. The article contains a wide table matherial on neutral stratification of discriminants of reflection groups. 32 refs.
@article{RM_1988_43_3_a3,
     author = {O. P. Shcherbak},
     title = {Wavefronts and reflection groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {149--194},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1988_43_3_a3/}
}
TY  - JOUR
AU  - O. P. Shcherbak
TI  - Wavefronts and reflection groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1988
SP  - 149
EP  - 194
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1988_43_3_a3/
LA  - en
ID  - RM_1988_43_3_a3
ER  - 
%0 Journal Article
%A O. P. Shcherbak
%T Wavefronts and reflection groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1988
%P 149-194
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1988_43_3_a3/
%G en
%F RM_1988_43_3_a3
O. P. Shcherbak. Wavefronts and reflection groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 43 (1988) no. 3, pp. 149-194. http://geodesic.mathdoc.fr/item/RM_1988_43_3_a3/