The action of $PLS(2, \mathbb Z)$~in~$\mathbb R^1$ is approximable
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 33 (1978) no. 1, pp. 221-222
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{RM_1978_33_1_a20,
author = {A. M. Vershik},
title = {The action of $PLS(2, \mathbb Z)$~in~$\mathbb R^1$ is approximable},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {221--222},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {1978},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1978_33_1_a20/}
}
TY - JOUR AU - A. M. Vershik TI - The action of $PLS(2, \mathbb Z)$~in~$\mathbb R^1$ is approximable JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1978 SP - 221 EP - 222 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1978_33_1_a20/ LA - en ID - RM_1978_33_1_a20 ER -
A. M. Vershik. The action of $PLS(2, \mathbb Z)$~in~$\mathbb R^1$ is approximable. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 33 (1978) no. 1, pp. 221-222. http://geodesic.mathdoc.fr/item/RM_1978_33_1_a20/