The action of $PLS(2, \mathbb Z)$~in~$\mathbb R^1$ is approximable
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 33 (1978) no. 1, pp. 221-222

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_1978_33_1_a20,
     author = {A. M. Vershik},
     title = {The action of $PLS(2, \mathbb Z)$~in~$\mathbb R^1$ is approximable},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {221--222},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1978_33_1_a20/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - The action of $PLS(2, \mathbb Z)$~in~$\mathbb R^1$ is approximable
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1978
SP  - 221
EP  - 222
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1978_33_1_a20/
LA  - en
ID  - RM_1978_33_1_a20
ER  - 
%0 Journal Article
%A A. M. Vershik
%T The action of $PLS(2, \mathbb Z)$~in~$\mathbb R^1$ is approximable
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1978
%P 221-222
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1978_33_1_a20/
%G en
%F RM_1978_33_1_a20
A. M. Vershik. The action of $PLS(2, \mathbb Z)$~in~$\mathbb R^1$ is approximable. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 33 (1978) no. 1, pp. 221-222. http://geodesic.mathdoc.fr/item/RM_1978_33_1_a20/