On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t\to\infty$ of solutions of non-stationary problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 2, pp. 1-58
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the Cauchy problem and boundary-value problem of general form in the exterior of a compact set for hyperbolic operators $L$, whose coefficients depend only on $x$ and are constant near infinity. Assuming that the wave fronts of the Green's matrix for $L$ go off to infinity as $t\to\infty$, we determine the asymptotic behaviour of solutions as $t\to\infty$. For the corresponding stationary problem we obtain the short-wave asymptotic behaviour of solutions for real and complex frequencies.
@article{RM_1975_30_2_a0,
author = {B. R. Vainberg},
title = {On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t\to\infty$ of solutions of non-stationary problems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--58},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1975_30_2_a0/}
}
TY - JOUR AU - B. R. Vainberg TI - On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t\to\infty$ of solutions of non-stationary problems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1975 SP - 1 EP - 58 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1975_30_2_a0/ LA - en ID - RM_1975_30_2_a0 ER -
%0 Journal Article %A B. R. Vainberg %T On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t\to\infty$ of solutions of non-stationary problems %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1975 %P 1-58 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_1975_30_2_a0/ %G en %F RM_1975_30_2_a0
B. R. Vainberg. On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t\to\infty$ of solutions of non-stationary problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 2, pp. 1-58. http://geodesic.mathdoc.fr/item/RM_1975_30_2_a0/