The problem of discriminating algorithmically the standard three-dimensional sphere
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 5, pp. 71-172
Voir la notice de l'article provenant de la source Math-Net.Ru
A constructive topological invariant, uniquely determining the Heegaard diagrams of the standard sphere in the class of all Heegaard diagrams of three-dimensional manifolds, is formed. The sufficiency of this invariant is proved by the methods of Morse theory. That this invariant is trivial in the class of Heegaard diagrams for the standard sphere is proved for certain infinite sequences, and on the remaining diagrams for the standard sphere the presence of the invariant is corroborated by a trial calculation on the electronic computer BESM-6, in which representations of the standard sphere were examined.
@article{RM_1974_29_5_a1,
author = {I. A. Volodin and V. E. Kuznetsov and A. T. Fomenko},
title = {The problem of discriminating algorithmically the standard three-dimensional sphere},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {71--172},
publisher = {mathdoc},
volume = {29},
number = {5},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1974_29_5_a1/}
}
TY - JOUR AU - I. A. Volodin AU - V. E. Kuznetsov AU - A. T. Fomenko TI - The problem of discriminating algorithmically the standard three-dimensional sphere JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1974 SP - 71 EP - 172 VL - 29 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1974_29_5_a1/ LA - en ID - RM_1974_29_5_a1 ER -
%0 Journal Article %A I. A. Volodin %A V. E. Kuznetsov %A A. T. Fomenko %T The problem of discriminating algorithmically the standard three-dimensional sphere %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1974 %P 71-172 %V 29 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_1974_29_5_a1/ %G en %F RM_1974_29_5_a1
I. A. Volodin; V. E. Kuznetsov; A. T. Fomenko. The problem of discriminating algorithmically the standard three-dimensional sphere. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 5, pp. 71-172. http://geodesic.mathdoc.fr/item/RM_1974_29_5_a1/