Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 5, pp. 1-70
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we study the $C^\infty$-well-posedness of the non-characteristic Cauchy problem for hyperbolic equations with characteristic roots of variable multiplicity. We obtain a necessary condition for the Cauchy problem with arbitrary lower order terms to be well-posed, and also a necessary condition for the smoothness of the solution to be independent of the lower order terms. For equations with characteristic roots of an arbitrary variable multiplicity we obtain necessary conditions on the lower order terms for the Cauchy problem to be well-posed. All the proofs are based on a single method: the construction of asymptotic solutions.
@article{RM_1974_29_5_a0,
author = {V. Ya. Ivrii and V. M. Petkov},
title = {Necessary conditions for the {Cauchy} problem for non-strictly hyperbolic equations to be well-posed},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--70},
publisher = {mathdoc},
volume = {29},
number = {5},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1974_29_5_a0/}
}
TY - JOUR AU - V. Ya. Ivrii AU - V. M. Petkov TI - Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1974 SP - 1 EP - 70 VL - 29 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1974_29_5_a0/ LA - en ID - RM_1974_29_5_a0 ER -
%0 Journal Article %A V. Ya. Ivrii %A V. M. Petkov %T Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1974 %P 1-70 %V 29 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_1974_29_5_a0/ %G en %F RM_1974_29_5_a0
V. Ya. Ivrii; V. M. Petkov. Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 5, pp. 1-70. http://geodesic.mathdoc.fr/item/RM_1974_29_5_a0/