Euler products corresponding to Siegel modular froms of genus~2
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 3, pp. 45-116
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we construct a theory of Dirichlet series with Euler product expansions corresponding to analytic automorphic forms for the integral symplectic group in genus 2; in Chapter 2 we establish a connection between the eigenvalues of the Hecke operators on the spaces of such forms with the Fourier coefficients of the eigenfunctions (Theorem 2.4.1); in Chapter 3 we demonstrate the possibility of analytic continuation to the entire complex plane and derive a functional equation for Euler products corresponding to the eigenfunctions of the Hecke operators (Theorem 3.1.1). Chapter 1 contains a survey of the present state of the theory of Euler products for Siegel modular forms of arbitrary genus $n$, including a sketch of the classical Hecke theory for the case $n=1$.
@article{RM_1974_29_3_a3,
author = {A. N. Andrianov},
title = {Euler products corresponding to {Siegel} modular froms of genus~2},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {45--116},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1974_29_3_a3/}
}
TY - JOUR AU - A. N. Andrianov TI - Euler products corresponding to Siegel modular froms of genus~2 JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1974 SP - 45 EP - 116 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1974_29_3_a3/ LA - en ID - RM_1974_29_3_a3 ER -
A. N. Andrianov. Euler products corresponding to Siegel modular froms of genus~2. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 3, pp. 45-116. http://geodesic.mathdoc.fr/item/RM_1974_29_3_a3/