Fields of invariants for Abelian groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 4, pp. 79-105

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the rationality of fields of invariants for finite groups of transformations that act linearly on a finite-dimensional space $V$ has a long history, but still remains not fully solved. However, for abelian groups of transformations considerable progress has recently been made. The results are already close to definitive. In the present article a detailed survey of these results is given, and a number of facts are published for the first time. The presentation is made from a uniform point of view and uses regularly the techniques of algebraic tori. In this context one of the problems of Zariski is discussed.
@article{RM_1973_28_4_a3,
     author = {V. E. Voskresenskii},
     title = {Fields of invariants for {Abelian} groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {79--105},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1973_28_4_a3/}
}
TY  - JOUR
AU  - V. E. Voskresenskii
TI  - Fields of invariants for Abelian groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1973
SP  - 79
EP  - 105
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1973_28_4_a3/
LA  - en
ID  - RM_1973_28_4_a3
ER  - 
%0 Journal Article
%A V. E. Voskresenskii
%T Fields of invariants for Abelian groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1973
%P 79-105
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1973_28_4_a3/
%G en
%F RM_1973_28_4_a3
V. E. Voskresenskii. Fields of invariants for Abelian groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 4, pp. 79-105. http://geodesic.mathdoc.fr/item/RM_1973_28_4_a3/