Multioperator algebras and clones of polylinear operators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 24 (1969) no. 1, pp. 45-57
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider principal derived polylinear operators on an $\Omega$-algebra $A$ over an infinite field $P$. We clarify them in terms of partial algebras, that is, of clones. The classification allows us also to classify the multioperator structures on a vector space $A$ for various systems of multioperators.
The idea of discussing clones comes from Cohn's book [1] and the papers of Whitlock [2], Khion [3] and Dicker [4]. We also use certain concepts of Higgins [5] relating to partial algebras.
The author expresses his sincere thanks to A. G. Kurosh for his guidance on this work.
@article{RM_1969_24_1_a5,
author = {V. A. Artamonov},
title = {Multioperator algebras and clones of polylinear operators},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {45--57},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {1969},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1969_24_1_a5/}
}
V. A. Artamonov. Multioperator algebras and clones of polylinear operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 24 (1969) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/RM_1969_24_1_a5/