Multioperator algebras and clones of polylinear operators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 24 (1969) no. 1, pp. 45-57

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider principal derived polylinear operators on an $\Omega$-algebra $A$ over an infinite field $P$. We clarify them in terms of partial algebras, that is, of clones. The classification allows us also to classify the multioperator structures on a vector space $A$ for various systems of multioperators. The idea of discussing clones comes from Cohn's book [1] and the papers of Whitlock [2], Khion [3] and Dicker [4]. We also use certain concepts of Higgins [5] relating to partial algebras. The author expresses his sincere thanks to A. G. Kurosh for his guidance on this work.
@article{RM_1969_24_1_a5,
     author = {V. A. Artamonov},
     title = {Multioperator algebras and clones of polylinear operators},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1969_24_1_a5/}
}
TY  - JOUR
AU  - V. A. Artamonov
TI  - Multioperator algebras and clones of polylinear operators
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1969
SP  - 45
EP  - 57
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1969_24_1_a5/
LA  - en
ID  - RM_1969_24_1_a5
ER  - 
%0 Journal Article
%A V. A. Artamonov
%T Multioperator algebras and clones of polylinear operators
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1969
%P 45-57
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1969_24_1_a5/
%G en
%F RM_1969_24_1_a5
V. A. Artamonov. Multioperator algebras and clones of polylinear operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 24 (1969) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/RM_1969_24_1_a5/