Subalgebras of free algebras of some varieties of multioperator algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 24 (1969) no. 1, pp. 15-24
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem whether subalgebras of free algebras of various varieties are free plays an important role in general algebra. For some varieties of linear algebras over a field the problem was solved by Kurosh [1] and Shirshov [2], [3]. Kurosh [4] introduced the concept of multioperator algebra over a field and proved that every subalgebra of a free multioperator algebra is free. This paper is devoted to a study of varieties of multioperator algebras given by identities of a special form; particular cases are the commutative and anticommutative laws for classical linear algebras. The main result of the paper comprises the freeness theorem mentioned above for subalgebras of a free multioperator algebra, as well as parallel theorems in Shirshov's papers [2] on the freeness of subalgebras of a free commutative and a free anticommutative algebra; the methods of this last article are maintained without essential modifications.
@article{RM_1969_24_1_a1,
author = {S. V. Polin},
title = {Subalgebras of free algebras of some varieties of multioperator algebras},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {15--24},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {1969},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1969_24_1_a1/}
}
TY - JOUR AU - S. V. Polin TI - Subalgebras of free algebras of some varieties of multioperator algebras JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1969 SP - 15 EP - 24 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1969_24_1_a1/ LA - en ID - RM_1969_24_1_a1 ER -
S. V. Polin. Subalgebras of free algebras of some varieties of multioperator algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 24 (1969) no. 1, pp. 15-24. http://geodesic.mathdoc.fr/item/RM_1969_24_1_a1/