Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study a class of Legendrian surfaces in contact five-folds by encoding their wavefronts via planar combinatorial structures. We refer to these surfaces as Legendrian weaves, and to the combinatorial objects as –graphs. First, we develop a diagrammatic calculus which encodes contact geometric operations on Legendrian surfaces as multicolored planar combinatorics. Second, we present an algebrogeometric characterization for the moduli space of microlocal constructible sheaves associated to these Legendrian surfaces. Then we use these –graphs and the flag moduli description of these Legendrian invariants for several new applications to contact and symplectic topology.
Applications include showing that any finite group can be realized as a subquotient of a 3–dimensional Lagrangian concordance monoid for a Legendrian surface in , a new construction of infinitely many exact Lagrangian fillings for Legendrian links in , and performing –rational point counts that distinguish Legendrian surfaces in . In addition, we develop the notion of Legendrian mutation, studying microlocal monodromies and their transformations. The appendix illustrates the connection between our –graph calculus for Lagrangian cobordisms and Elias, Khovanov and Williamson’s Soergel calculus.
Casals, Roger 1 ; Zaslow, Eric 2
@article{GT_2022_26_8_a4, author = {Casals, Roger and Zaslow, Eric}, title = {Legendrian weaves : {N{\textendash}graph} calculus, flag moduli and applications}, journal = {Geometry & topology}, pages = {3589--3745}, publisher = {mathdoc}, volume = {26}, number = {8}, year = {2022}, url = {http://geodesic.mathdoc.fr/item/GT_2022_26_8_a4/} }
Casals, Roger; Zaslow, Eric. Legendrian weaves : N–graph calculus, flag moduli and applications. Geometry & topology, Tome 26 (2022) no. 8, pp. 3589-3745. http://geodesic.mathdoc.fr/item/GT_2022_26_8_a4/
[1] Mirror symmetry, D–branes and counting holomorphic discs, preprint (2000)
, ,[2] Large N duality, mirror symmetry, and a Q–deformed A–polynomial for knots, preprint (2012)
, ,[3] On types of knotted curves, Ann. of Math. 28 (1926/27) 562 | DOI
, ,[4] Critical points of smooth functions, from: "Proceedings of the International Congress of Mathematicians" (editor R D James), Canad. Math. Congress (1975) 19
,[5] Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976) 557 | DOI
,[6] Indexes of singular points of 1–forms on manifolds with boundary, convolutions of invariants of groups generated by reflections, and singular projections of smooth surfaces, Uspekhi Mat. Nauk 34 (1979) 3
,[7] Singularities of caustics and wave fronts, 62, Kluwer (1990) | DOI
,[8] Symplectic geometry, from: "Dynamical systems, IV" (editor S P Novikov), Encyclopaedia Math. Sci. 4, Springer (2001) 1 | DOI
, ,[9] Mirror symmetry and T–duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007) 51
,[10] Special Lagrangian fibrations, wall-crossing, and mirror symmetry, from: "Surveys in differential geometry, XIII : Geometry, analysis, and algebraic geometry" (editors H D Cao, S T Yau), Surv. Differ. Geom. 13, International (2009) 1 | DOI
,[11] Entrelacements et équations de Pfaff, from: "IIIe rencontre de géométrie du Schnepfenried" (editors D Bernard, T Hangan, R Lutz), Astérisque 107, Soc. Math. France (1983) 87
,[12] Caustique mystique (d’après Arnold et al), from: "Séminaire Bourbaki, 1984/85", Astérisque 133–134, Soc. Math. France (1986) 19
,[13] Braids, links, and mapping class groups, 82, Princeton Univ. Press (1974) | DOI
,[14] Graph theory, 244, Springer (2008) | DOI
, ,[15] Lagrangian cobordisms via generating families: construction and geography, Algebr. Geom. Topol. 15 (2015) 2439 | DOI
, , ,[16] Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci. 121 (2015) 155 | DOI
, ,[17] Lagrangian skeleta and plane curve singularities, J. Fixed Point Theory Appl. 24 (2022) | DOI
,[18] Infinitely many Lagrangian fillings, Ann. of Math. 195 (2022) 207 | DOI
, ,[19] Cluster structures on braid varieties, preprint (2022)
, , , , , ,[20] Algebraic weaves and braid varieties, preprint (2020)
, , , ,[21] Differential algebra of cubic planar graphs, Adv. Math. 338 (2018) 401 | DOI
, ,[22] Legendrian fronts for affine varieties, Duke Math. J. 168 (2019) 225 | DOI
, ,[23] Geometric criteria for overtwistedness, J. Amer. Math. Soc. 32 (2019) 563 | DOI
, , ,[24] Braid Loops with infinite monodromy on the Legendrian contact DGA, J. Topol. 15 (2022) 1927 | DOI
, ,[25] Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441 | DOI
,[26] From Stein to Weinstein and back : symplectic geometry of affine complex manifolds, 59, Amer. Math. Soc. (2012) | DOI
, ,[27] Stein structures: existence and flexibility, from: "Contact and symplectic topology" (editors F Bourgeois, V Colin, A Stipsicz), Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc. (2014) 357 | DOI
, ,[28] Some results on quotients of triangle groups, Bull. Austral. Math. Soc. 30 (1984) 73 | DOI
,[29] Graph theory, 173, Springer (2017) | DOI
,[30] Knotted Legendrian surfaces with few Reeb chords, Algebr. Geom. Topol. 11 (2011) 2903 | DOI
,[31] Legendrian ambient surgery and Legendrian contact homology, J. Symplectic Geom. 14 (2016) 811 | DOI
,[32] K–decompositions and 3d gauge theories, J. High Energy Phys. (2016) | DOI
, , ,[33] Filtrations on the knot contact homology of transverse knots, Math. Ann. 355 (2013) 1561 | DOI
, , , ,[34] Knot contact homology, Geom. Topol. 17 (2013) 975 | DOI
, , , ,[35] The contact homology of Legendrian submanifolds in R2n+1, J. Differential Geom. 71 (2005) 177
, , ,[36] Non-isotopic Legendrian submanifolds in R2n+1, J. Differential Geom. 71 (2005) 85
, , ,[37] Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. 18 (2016) 2627 | DOI
, , ,[38] A complete knot invariant from contact homology, Invent. Math. 211 (2018) 1149 | DOI
, , ,[39] Diagrammatics for Soergel categories, Int. J. Math. Math. Sci. (2010) | DOI
, ,[40] Soergel calculus, Represent. Theory 20 (2016) 295 | DOI
, ,[41] Topological characterization of Stein manifolds of dimension > 2, Internat. J. Math. 1 (1990) 29 | DOI
,[42] Legendrian and transversal knots in tight contact 3–manifolds, from: "Topological methods in modern mathematics" (editors L R Goldberg, A V Phillips), Publish or Perish (1993) 171
,[43] Introduction to symplectic field theory, from: "Visions in mathematics" (editors N Alon, J Bourgain, A Connes, M Gromov, V Milman), Birkhäuser (= GAFA special volume, II) (2000) 560 | DOI
, , ,[44] Introduction to the h–principle, 48, Amer. Math. Soc. (2002) | DOI
, ,[45] Legendrian and transversal knots, from: "Handbook of knot theory" (editors W Menasco, M Thistlethwaite), Elsevier (2005) 105 | DOI
,[46] Legendrian satellites, Int. Math. Res. Not. 2018 (2018) 7241 | DOI
, ,[47] Cluster X–varieties, amalgamation, and Poisson–Lie groups, from: "Algebraic geometry and number theory" (editor V Ginzburg), Progr. Math. 253, Birkhäuser (2006) 27 | DOI
, ,[48] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1 | DOI
, ,[49] Cluster algebras, I : Foundations, J. Amer. Math. Soc. 15 (2002) 497 | DOI
, ,[50] Lagrangian intersection Floer theory : anomaly and obstruction, I, 46, Amer. Math. Soc. (2009) | DOI
, , , ,[51] BPS graphs : from spectral networks to BPS quivers, J. High Energy Phys. (2017) | DOI
, , , ,[52] Four-dimensional wall-crossing via three-dimensional field theory, Comm. Math. Phys. 299 (2010) 163 | DOI
, , ,[53] Spectral networks, Ann. Henri Poincaré 14 (2013) 1643 | DOI
, , ,[54] Spectral networks and snakes, Ann. Henri Poincaré 15 (2014) 61 | DOI
, , ,[55] Microlocal Morse theory of wrapped Fukaya categories, preprint (2018)
, , ,[56] Sectorial descent for wrapped Fukaya categories, preprint (2018)
, , ,[57] Covariantly functorial wrapped Floer theory on Liouville sectors, Publ. Math. Inst. Hautes Études Sci. 131 (2020) 73 | DOI
, , ,[58] Augmentations, fillings, and clusters, preprint (2020)
, , ,[59] Positive braid links with infinitely many fillings, preprint (2020)
, , ,[60] An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI
,[61] Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619 | DOI
,[62] Ideal webs, moduli spaces of local systems, and 3d Calabi–Yau categories, from: "Algebra, geometry, and physics in the 21st century" (editors D Auroux, L Katzarkov, T Pantev, Y Soibelman, Y Tschinkel), Progr. Math. 324, Springer (2017) 31 | DOI
,[63] Dimers and cluster integrable systems, Ann. Sci. Éc. Norm. Supér. 46 (2013) 747 | DOI
, ,[64] Donaldson–Thomas transformations of moduli spaces of G–local systems, Adv. Math. 327 (2018) 225 | DOI
, ,[65] Partial differential relations, 9, Springer (1986) | DOI
,[66] Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems, Duke Math. J. 161 (2012) 201 | DOI
, , ,[67] Microlocal theory of sheaves and Tamarkin’s non displaceability theorem, from: "Homological mirror symmetry and tropical geometry" (editors R Castano-Bernard, F Catanese, M Kontsevich, T Pantev, Y Soibelman, I Zharkov), Lect. Notes Unione Mat. Ital. 15, Springer (2014) 43 | DOI
, ,[68] Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1892) 403 | DOI
,[69] Contact homology and one parameter families of Legendrian knots, Geom. Topol. 9 (2005) 2013 | DOI
,[70] Microlocal study of sheaves, 128, Soc. Math. France (1985) 235
, ,[71] Sheaves on manifolds, 292, Springer (1990) | DOI
, ,[72] Deriving DG categories, Ann. Sci. École Norm. Sup. 27 (1994) 63 | DOI
,[73] Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math. 18 (2007) 869 | DOI
,[74] Motivic Donaldson–Thomas invariants : summary of results, from: "Mirror symmetry and tropical geometry" (editors R Castaño-Bernard, Y Soibelman, I Zharkov), Contemp. Math. 527, Amer. Math. Soc. (2010) 55 | DOI
, ,[75] Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry, from: "Homological mirror symmetry and tropical geometry" (editors R Castano-Bernard, F Catanese, M Kontsevich, T Pantev, Y Soibelman, I Zharkov), Lect. Notes Unione Mat. Ital. 15, Springer (2014) 197 | DOI
, ,[76] Sheaf quantization from exact WKB analysis, preprint (2020)
,[77] The six operations for sheaves on Artin stacks, I : Finite coefficients, Publ. Math. Inst. Hautes Études Sci. 107 (2008) 109 | DOI
, ,[78] Perverse t–structure on Artin stacks, Math. Z. 261 (2009) 737 | DOI
, ,[79] Minimal mutation-infinite quivers, Exp. Math. 26 (2017) 308 | DOI
,[80] Classical groups of large rank as Hurwitz groups, J. Algebra 219 (1999) 531 | DOI
, ,[81] Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23 (2010) 853 | DOI
, ,[82] Über die freie Äquivalenz der geschlossenen Zöpfe, Rec. Math. Moscou 1 (1936) 73
,[83] 2–Frieze patterns and the cluster structure of the space of polygons, Ann. Inst. Fourier (Grenoble) 62 (2012) 937 | DOI
, , ,[84] Loose Legendrian embeddings in high-dimensional contact manifolds, PhD thesis, Stanford University (2012)
,[85] Microlocal branes are constructible sheaves, Selecta Math. 15 (2009) 563 | DOI
,[86] Arboreal singularities, Geom. Topol. 21 (2017) 1231 | DOI
,[87] A combinatorial calculation of the Landau–Ginzburg model M = C3, W = z1z2z3, Selecta Math. 23 (2017) 519 | DOI
,[88] Constructible sheaves and the Fukaya category, J. Amer. Math. Soc. 22 (2009) 233 | DOI
, ,[89] Cluster-like coordinates in supersymmetric quantum field theory, Proc. Natl. Acad. Sci. USA 111 (2014) 9717 | DOI
,[90] Computable Legendrian invariants, Topology 42 (2003) 55 | DOI
,[91] Combinatorial knot contact homology and transverse knots, Adv. Math. 227 (2011) 2189 | DOI
,[92] Satellites of Legendrian knots and representations of the Chekanov–Eliashberg algebra, Algebr. Geom. Topol. 13 (2013) 3047 | DOI
, ,[93] Augmentations are sheaves, Geom. Topol. 24 (2020) 2149 | DOI
, , , , ,[94] Liouville–Arnold integrability of the pentagram map on closed polygons, Duke Math. J. 162 (2013) 2149 | DOI
, , ,[95] Introduction to positive representations and Fock–Goncharov coordinates, preprint (2015)
,[96] Augmentations and exact Lagrangian cobordisms, PhD thesis, Duke University (2017)
,[97] Exact Lagrangian fillings of Legendrian (2,n) torus links, Pacific J. Math. 289 (2017) 417 | DOI
,[98] The surgery of Lagrange submanifolds, Geom. Funct. Anal. 1 (1991) 198 | DOI
,[99] Knots, links, braids and 3–manifolds : an introduction to the new invariants in low-dimensional topology, 154, Amer. Math. Soc. (1997) | DOI
, ,[100] Elementare Begründung der Knotentheorie, Abh. Math. Sem. Univ. Hamburg 5 (1927) 24 | DOI
,[101] Knots and links, 7, Publish or Perish (1976)
,[102] Reidemeister-type moves for surfaces in four-dimensional space, from: "Knot theory" (editors V F R Jones, J Kania-Bartoszyńska, J H Przytycki, P Traczyk, V G Turaev), Banach Center Publ. 42, Polish Acad. Sci. Inst. Math. (1998) 347
,[103] Categorification of sl2 and braid groups, from: "Trends in representation theory of algebras and related topics" (editors J A de la Peña, R Bautista), Contemp. Math. 406, Amer. Math. Soc. (2006) 137 | DOI
,[104] Skeleta of affine hypersurfaces, Geom. Topol. 18 (2014) 1343 | DOI
, , , ,[105] Cellular Legendrian contact homology for surfaces, II, Internat. J. Math. 30 (2019) | DOI
, ,[106] Cellular Legendrian contact homology for surfaces, III, Internat. J. Math. 30 (2019) | DOI
, ,[107] Families of Legendrian submanifolds via generating families, Quantum Topol. 7 (2016) 639 | DOI
, ,[108] Knoten und Vollringe, Acta Math. 90 (1953) 131 | DOI
,[109] The conormal torus is a complete knot invariant, Forum Math. Pi 7 (2019) | DOI
,[110] On the combinatorics of exact Lagrangian surfaces, preprint (2016)
, , ,[111] Cluster varieties from Legendrian knots, Duke Math. J. 168 (2019) 2801 | DOI
, , , ,[112] Legendrian knots and constructible sheaves, Invent. Math. 207 (2017) 1031 | DOI
, , ,[113] A bordered Chekanov–Eliashberg algebra, J. Topol. 4 (2011) 73 | DOI
,[114] Quiver algebras as Fukaya categories, Geom. Topol. 19 (2015) 2557 | DOI
,[115] Kazhdan–Lusztig–Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu 6 (2007) 501 | DOI
,[116] Arboreal singularities in Weinstein skeleta, Selecta Math. 24 (2018) 4105 | DOI
,[117] Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories, C. R. Math. Acad. Sci. Paris 340 (2005) 15 | DOI
,[118] The homotopy theory of dg–categories and derived Morita theory, Invent. Math. 167 (2007) 615 | DOI
,[119] Cubic planar graphs and Legendrian surface theory, Adv. Theor. Math. Phys. 22 (2018) 1289 | DOI
, ,[120] Annular homology of Artin braids, I, preprint (2019)
,[121] On exotic Lagrangian tori in CP2, Geom. Topol. 18 (2014) 2419 | DOI
,[122] Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971) 329 | DOI
,