Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We use Khovanov–Rozansky link homology to define invariants of oriented smooth –manifolds, as skein modules constructed from certain –categories with well-behaved duals.
The technical heart of this construction is a proof of the sweep-around property, which makes these link homologies well defined in the –sphere.
Morrison, Scott 1 ; Walker, Kevin 2 ; Wedrich, Paul 3
@article{GT_2022_26_8_a1, author = {Morrison, Scott and Walker, Kevin and Wedrich, Paul}, title = {Invariants of 4{\textendash}manifolds from {Khovanov{\textendash}Rozansky} link homology}, journal = {Geometry & topology}, pages = {3367--3420}, publisher = {mathdoc}, volume = {26}, number = {8}, year = {2022}, url = {http://geodesic.mathdoc.fr/item/GT_2022_26_8_a1/} }
Morrison, Scott; Walker, Kevin; Wedrich, Paul. Invariants of 4–manifolds from Khovanov–Rozansky link homology. Geometry & topology, Tome 26 (2022) no. 8, pp. 3367-3420. http://geodesic.mathdoc.fr/item/GT_2022_26_8_a1/
[1] Khovanov homology from Floer cohomology, J. Amer. Math. Soc. 32 (2019) 1 | DOI
, ,[2] Categorification of the Kauffman bracket skein module of I–bundles over surfaces, Algebr. Geom. Topol. 4 (2004) 1177 | DOI
, , ,[3] Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 175 | DOI
,[4] Higher-dimensional algebra, IV : 2–tangles, Adv. Math. 180 (2003) 705 | DOI
, ,[5] Higher-dimensional algebra, I : Braided monoidal 2–categories, Adv. Math. 121 (1996) 196 | DOI
, ,[6] Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 | DOI
,[7] The Karoubi envelope and Lee’s degeneration of Khovanov homology, Algebr. Geom. Topol. 6 (2006) 1459 | DOI
, ,[8] Gray categories with duals and their diagrams, preprint (2012)
, , ,[9] Quantum link homology via trace functor, I, Invent. Math. 215 (2019) 383 | DOI
, , ,[10] Integrating quantum groups over surfaces, J. Topol. 11 (2018) 874 | DOI
, , ,[11] An oriented model for Khovanov homology, J. Knot Theory Ramifications 19 (2010) 291 | DOI
,[12] On dualizability of braided tensor categories, Compos. Math. 157 (2021) 435 | DOI
, , ,[13] A combinatorial description of knotted surfaces and their isotopies, Adv. Math. 127 (1997) 1 | DOI
, , ,[14] Reidemeister moves for surface isotopies and their interpretation as moves to movies, J. Knot Theory Ramifications 2 (1993) 251 | DOI
, ,[15] Knot homology via derived categories of coherent sheaves, I : The sl(2)–case, Duke Math. J. 142 (2008) 511 | DOI
, ,[16] Knot homology via derived categories of coherent sheaves, II : slm case, Invent. Math. 174 (2008) 165 | DOI
, ,[17] Webs and quantum skew Howe duality, Math. Ann. 360 (2014) 351 | DOI
, , ,[18] Fixing the functoriality of Khovanov homology, Geom. Topol. 13 (2009) 1499 | DOI
, , ,[19] Clock and category: is quantum gravity algebraic?, J. Math. Phys. 36 (1995) 6180 | DOI
,[20] Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35 (1994) 5136 | DOI
, ,[21] State-sum invariants of 4–manifolds, J. Knot Theory Ramifications 6 (1997) 177 | DOI
, , ,[22] Generalized centers of braided and sylleptic monoidal 2–categories, Adv. Math. 136 (1998) 183 | DOI
,[23] Functoriality of colored link homologies, Proc. Lond. Math. Soc. 117 (2018) 996 | DOI
, , ,[24] Skeins on branes, preprint (2019)
, ,[25] Diagrammatics for Soergel categories, Int. J. Math. Math. Sci. (2010) | DOI
, ,[26] Rouquier complexes are functorial over braid cobordisms, Homology Homotopy Appl. 12 (2010) 109 | DOI
, ,[27] A categorification of quantum sl(2) at prime roots of unity, Adv. Math. 299 (2016) 863 | DOI
, ,[28] Man and machine thinking about the smooth 4-dimensional Poincaré conjecture, Quantum Topol. 1 (2010) 171 | DOI
, , , ,[29] Note on Khovanov link cohomology, preprint (2004)
,[30] Derived traces of Soergel categories, Int. Math. Res. Not. 2022 (2022) 11304 | DOI
, , ,[31] Annular Khovanov homology and knotted Schur–Weyl representations, Compos. Math. 154 (2018) 459 | DOI
, , ,[32] A two-variable series for knot complements, Quantum Topol. 12 (2021) 1 | DOI
, ,[33] BPS spectra and 3–manifold invariants, J. Knot Theory Ramifications 29 (2020) | DOI
, , , ,[34] Fivebranes and 3–manifold homology, J. High Energy Phys. (2017) | DOI
, , ,[35] Khovanov–Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005) 53 | DOI
, , ,[36] Categorified trace for module tensor categories over braided tensor categories, Doc. Math. 21 (2016) 1089
, , ,[37] A Kirby color for Khovanov homology, preprint (2022)
, , ,[38] A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985) 103 | DOI
,[39] Planar algebras, I, preprint (1999)
,[40] Link homology theories and ribbon concordances, preprint (2019)
,[41] 2–Categories and Zamolodchikov tetrahedra equations, from: "Algebraic groups and their generalizations: quantum and infinite-dimensional methods" (editors W J Haboush, B J Parshall), Proc. Sympos. Pure Math. 56, Amer. Math. Soc. (1994) 177 | DOI
, ,[42] A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 | DOI
,[43] Link homology and Frobenius extensions, Fund. Math. 190 (2006) 179 | DOI
,[44] Hopfological algebra and categorification at a root of unity: the first steps, J. Knot Theory Ramifications 25 (2016) | DOI
,[45] A categorification of quantum sl(n), Quantum Topol. 1 (2010) 1 | DOI
, ,[46] Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 | DOI
, ,[47] Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011) 97 | DOI
, ,[48] Khovanov homology is a skew Howe 2–representation of categorified quantum slm, Algebr. Geom. Topol. 15 (2015) 2517 | DOI
, , ,[49] An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554 | DOI
,[50] A slice genus lower bound from sl(n) Khovanov–Rozansky homology, Adv. Math. 222 (2009) 1220 | DOI
,[51] On the classification of topological field theories, from: "Current developments in mathematics, 2008" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2009) 129
,[52] Introduction to quantum groups, 110, Birkhäuser (1993)
,[53] Spherical 2–categories and 4–manifold invariants, Adv. Math. 143 (1999) 288 | DOI
,[54] sl(N)–link homology (N ≥ 4) using foams and the Kapustin–Li formula, Geom. Topol. 13 (2009) 1075 | DOI
, , ,[55] The diagrammatic Soergel category and sl(N)–foams, for N ≥ 4, Int. J. Math. Math. Sci. (2010) | DOI
, ,[56] Skein lasagna modules for 2–handlebodies, J. Reine Angew. Math. 788 (2022) 37 | DOI
, ,[57] Skein lasagna modules and handle decompositions, preprint (2022)
, , ,[58] Blob homology, Geom. Topol. 16 (2012) 1481 | DOI
, ,[59] Skein modules of 3–manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91
,[60] Hopfological algebra, Compos. Math. 150 (2014) 1 | DOI
,[61] Categorification at prime roots of unity and hopfological finiteness, from: "Categorification and higher representation theory" (editors A Beliakova, A D Lauda), Contemp. Math. 683, Amer. Math. Soc. (2017) 261 | DOI
, ,[62] The sln foam 2–category : a combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality, Adv. Math. 302 (2016) 1251 | DOI
, ,[63] Sutured annular Khovanov–Rozansky homology, Trans. Amer. Math. Soc. 370 (2018) 1285 | DOI
, ,[64] Mixed quantum skew Howe duality and link invariants of type A, J. Pure Appl. Algebra 223 (2019) 2733 | DOI
, ,[65] Extremal weight projectors, Math. Res. Lett. 25 (2018) 1911 | DOI
, ,[66] Khovanov homology and categorification of skein modules, Quantum Topol. 12 (2021) 129 | DOI
, ,[67] Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI
,[68] Some differentials on Khovanov–Rozansky homology, Geom. Topol. 19 (2015) 3031 | DOI
,[69] Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1 | DOI
, ,[70] Invariants of 3–manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547 | DOI
, ,[71] A closed formula for the evaluation of foams, Quantum Topol. 11 (2020) 411 | DOI
, ,[72] Deformations of colored slN link homologies via foams, Geom. Topol. 20 (2016) 3431 | DOI
, ,[73] 2–Kac–Moody algebras, preprint (2008)
,[74] A categorification of the stable SU(2) Witten–Reshetikhin–Turaev invariant of links in S2 × S1, preprint (2010)
,[75] A link invariant from the symplectic geometry of nilpotent slices, Duke Math. J. 134 (2006) 453 | DOI
, ,[76] Categorification of the Temperley–Lieb category, tangles, and cobordisms via projective functors, Duke Math. J. 126 (2005) 547 | DOI
,[77] Parabolic category O, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology, Compos. Math. 145 (2009) 954 | DOI
,[78] Compactness theorems for SL(2; C) generalizations of the 4–dimensional anti-self dual equations, preprint (2013)
,[79] Sequences of Nahm pole solutions to the SU(2) Kapustin–Witten equations, preprint (2018)
,[80] Positive basis for surface skein algebras, Proc. Natl. Acad. Sci. USA 111 (2014) 9725 | DOI
,[81] Super q–Howe duality and web categories, Algebr. Geom. Topol. 17 (2017) 3703 | DOI
, , ,[82] Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. 24 (1991) 635 | DOI
,[83] TQFTs, book project (2006)
,[84] Knot invariants and higher representation theory, 1191, Amer. Math. Soc. (2017) | DOI
,[85] Khovanov homology for links in #r(S2 × S1), Michigan Math. J. 70 (2021) 675 | DOI
,[86] Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351 | DOI
,[87] Fivebranes and knots, Quantum Topol. 3 (2012) 1 | DOI
,[88] On the quantum filtration of the Khovanov–Rozansky cohomology, Adv. Math. 221 (2009) 54 | DOI
,[89] Equivariant colored sl(N)–homology for links, J. Knot Theory Ramifications 21 (2012) | DOI
,