Partition-dependent stochastic measures and $q$-deformed cumulants
Documenta mathematica, Tome 6 (2001), pp. 343-384.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: On a $q$-deformed Fock space, we define multiple $q$-Lévy processes. Using the partition-dependent stochastic measures derived from such processes, we define partition-dependent cumulants for their joint distributions, and express these in terms of the cumulant functional using the number of restricted crossings of P. Biane. In the single variable case, this allows us to define a $q$-convolution for a large class of probability measures. We make some comments on the Itô table in this context, and investigate the $q$-Brownian motion and the $q$-Poisson process in more detail.
Classification : 46L53, 05A18, 47D, 60E, 81S05
@article{DOCMA_2001__6__a8,
     author = {Anshelevich, Michael},
     title = {Partition-dependent stochastic measures and $q$-deformed cumulants},
     journal = {Documenta mathematica},
     pages = {343--384},
     publisher = {mathdoc},
     volume = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a8/}
}
TY  - JOUR
AU  - Anshelevich, Michael
TI  - Partition-dependent stochastic measures and $q$-deformed cumulants
JO  - Documenta mathematica
PY  - 2001
SP  - 343
EP  - 384
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a8/
LA  - en
ID  - DOCMA_2001__6__a8
ER  - 
%0 Journal Article
%A Anshelevich, Michael
%T Partition-dependent stochastic measures and $q$-deformed cumulants
%J Documenta mathematica
%D 2001
%P 343-384
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a8/
%G en
%F DOCMA_2001__6__a8
Anshelevich, Michael. Partition-dependent stochastic measures and $q$-deformed cumulants. Documenta mathematica, Tome 6 (2001), pp. 343-384. http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a8/