A generalization of Mumford's geometric invariant theory
Documenta mathematica, Tome 6 (2001), pp. 571-592.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We generalize Mumford's construction of good quotients for reductive group actions. Replacing a single linearized invertible sheaf with a certain group of sheaves, we obtain a Geometric Invariant Theory producing not only the quasiprojective quotient spaces, but more generally all divisorial ones. As an application, we characterize in terms of the Weyl group of a maximal torus, when a proper reductive group action on a smooth complex variety admits an algebraic variety as orbit space.
Classification : 14L24, 14L30
Keywords: geometric invariant theory, good quotients, reductive group actions
@article{DOCMA_2001__6__a0,
     author = {Hausen, J\"urgen},
     title = {A generalization of {Mumford's} geometric invariant theory},
     journal = {Documenta mathematica},
     pages = {571--592},
     publisher = {mathdoc},
     volume = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a0/}
}
TY  - JOUR
AU  - Hausen, Jürgen
TI  - A generalization of Mumford's geometric invariant theory
JO  - Documenta mathematica
PY  - 2001
SP  - 571
EP  - 592
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a0/
LA  - en
ID  - DOCMA_2001__6__a0
ER  - 
%0 Journal Article
%A Hausen, Jürgen
%T A generalization of Mumford's geometric invariant theory
%J Documenta mathematica
%D 2001
%P 571-592
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a0/
%G en
%F DOCMA_2001__6__a0
Hausen, Jürgen. A generalization of Mumford's geometric invariant theory. Documenta mathematica, Tome 6 (2001), pp. 571-592. http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a0/