[Une description géométrique de la cohomologie différentielle]
Voir la notice de l'article provenant de la source Numdam
In this paper we give a geometric cobordism description of differential integral cohomology. The main motivation to consider this model (for other models see [5, 6, 7, 8]) is that it allows for simple descriptions of both the cup product and the integration. In particular it is very easy to verify the compatibilty of these structures. We proceed in a similar way in the case of differential cobordism as constructed in [4]. There the starting point was Quillen’s cobordism description of singular cobordism groups for a differential manifold . Here we use instead the similar description of integral cohomology from [11]. This cohomology theory is denoted by . In this description smooth manifolds in Quillen’s description are replaced by so-called stratifolds, which are certain stratified spaces. The cohomology theory is naturally isomorphic to ordinary integral cohomology , thus we obtain a cobordism type definition of the differential extension of ordinary integral cohomology.
Nous donnons une définition géométrique de la cohomologie intégrale différentielle. Nous utilisons des cycles de cobordisme avec singularités, et des formes différentielles distributionnelles. Avec cette description, la construction de la multiplication et de l’intégration avec toutes les proprietés désirées est particulièrement simple.
Keywords: differential cohomology, smooth cohomology, geometric cycles, cobordism
Mots-clés : cohomologie différentielle, cycles géométriques, cobordisme
Bunke, Ulrich 1 ; Kreck, Matthias 2 ; Schick, Thomas 3
@article{AMBP_2010__17_1_1_0,
author = {Bunke, Ulrich and Kreck, Matthias and Schick, Thomas},
title = {A geometric description of differential cohomology},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {1--16},
publisher = {Annales math\'ematiques Blaise Pascal},
volume = {17},
number = {1},
year = {2010},
doi = {10.5802/ambp.276},
zbl = {1200.55007},
mrnumber = {2674652},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/ambp.276/}
}
TY - JOUR AU - Bunke, Ulrich AU - Kreck, Matthias AU - Schick, Thomas TI - A geometric description of differential cohomology JO - Annales mathématiques Blaise Pascal PY - 2010 SP - 1 EP - 16 VL - 17 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://geodesic.mathdoc.fr/articles/10.5802/ambp.276/ DO - 10.5802/ambp.276 LA - en ID - AMBP_2010__17_1_1_0 ER -
%0 Journal Article %A Bunke, Ulrich %A Kreck, Matthias %A Schick, Thomas %T A geometric description of differential cohomology %J Annales mathématiques Blaise Pascal %D 2010 %P 1-16 %V 17 %N 1 %I Annales mathématiques Blaise Pascal %U http://geodesic.mathdoc.fr/articles/10.5802/ambp.276/ %R 10.5802/ambp.276 %G en %F AMBP_2010__17_1_1_0
Bunke, Ulrich; Kreck, Matthias; Schick, Thomas. A geometric description of differential cohomology. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 1, pp. 1-16. doi: 10.5802/ambp.276
Cité par Sources :
