A geometric description of differential cohomology
[Une description géométrique de la cohomologie différentielle]
Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 1, pp. 1-16

Voir la notice de l'article provenant de la source Numdam

In this paper we give a geometric cobordism description of differential integral cohomology. The main motivation to consider this model (for other models see [5, 6, 7, 8]) is that it allows for simple descriptions of both the cup product and the integration. In particular it is very easy to verify the compatibilty of these structures. We proceed in a similar way in the case of differential cobordism as constructed in [4]. There the starting point was Quillen’s cobordism description of singular cobordism groups for a differential manifold X. Here we use instead the similar description of integral cohomology from [11]. This cohomology theory is denoted by SH * (X). In this description smooth manifolds in Quillen’s description are replaced by so-called stratifolds, which are certain stratified spaces. The cohomology theory SH * (X) is naturally isomorphic to ordinary integral cohomology H * (X), thus we obtain a cobordism type definition of the differential extension of ordinary integral cohomology.

Nous donnons une définition géométrique de la cohomologie intégrale différentielle. Nous utilisons des cycles de cobordisme avec singularités, et des formes différentielles distributionnelles. Avec cette description, la construction de la multiplication et de l’intégration avec toutes les proprietés désirées est particulièrement simple.

DOI : 10.5802/ambp.276
Classification : 55N20, 57R19
Keywords: differential cohomology, smooth cohomology, geometric cycles, cobordism
Mots-clés : cohomologie différentielle, cycles géométriques, cobordisme

Bunke, Ulrich 1 ; Kreck, Matthias 2 ; Schick, Thomas 3

1 NWF I - Mathematik Universität Regensburg 93040 Regensburg Deutschland
2 Hausdorff Research Institute for Mathematics Poppelsdorfer Allee 45 D-53115 Bonn Germany
3 Mathematisches Institut Georg-August-Universität Göttingen Bunsenstr. 3 37073 Göttingen Germany
@article{AMBP_2010__17_1_1_0,
     author = {Bunke, Ulrich and Kreck, Matthias and Schick, Thomas},
     title = {A geometric description of differential cohomology},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {1--16},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {17},
     number = {1},
     year = {2010},
     doi = {10.5802/ambp.276},
     zbl = {1200.55007},
     mrnumber = {2674652},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/ambp.276/}
}
TY  - JOUR
AU  - Bunke, Ulrich
AU  - Kreck, Matthias
AU  - Schick, Thomas
TI  - A geometric description of differential cohomology
JO  - Annales mathématiques Blaise Pascal
PY  - 2010
SP  - 1
EP  - 16
VL  - 17
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://geodesic.mathdoc.fr/articles/10.5802/ambp.276/
DO  - 10.5802/ambp.276
LA  - en
ID  - AMBP_2010__17_1_1_0
ER  - 
%0 Journal Article
%A Bunke, Ulrich
%A Kreck, Matthias
%A Schick, Thomas
%T A geometric description of differential cohomology
%J Annales mathématiques Blaise Pascal
%D 2010
%P 1-16
%V 17
%N 1
%I Annales mathématiques Blaise Pascal
%U http://geodesic.mathdoc.fr/articles/10.5802/ambp.276/
%R 10.5802/ambp.276
%G en
%F AMBP_2010__17_1_1_0
Bunke, Ulrich; Kreck, Matthias; Schick, Thomas. A geometric description of differential cohomology. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 1, pp. 1-16. doi: 10.5802/ambp.276

Cité par Sources :