Divergence-free positive symmetric tensors and fluid dynamics
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1209-1234
Voir la notice de l'article provenant de la source Numdam
We consider tensors that are symmetric, positive semi-definite, and whose row-divergence vanishes identically. We establish sharp inequalities for the integral of . We apply them to models of compressible inviscid fluids: Euler equations, Euler–Fourier, relativistic Euler, Boltzman, BGK, etc. We deduce an a priori estimate for a new quantity, namely the space–time integral of , where ρ is the mass density, p the pressure and n the space dimension. For kinetic models, the corresponding quantity generalizes Bony's functional.
DOI :
10.1016/j.anihpc.2017.11.002
Keywords:
Conservation laws, Gas dynamics, Functional inequalities
@article{AIHPC_2018__35_5_1209_0,
author = {Serre, Denis},
title = {Divergence-free positive symmetric tensors and fluid dynamics},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {1209--1234},
publisher = {Elsevier},
volume = {35},
number = {5},
year = {2018},
doi = {10.1016/j.anihpc.2017.11.002},
mrnumber = {3813963},
zbl = {1393.35181},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.11.002/}
}
TY - JOUR AU - Serre, Denis TI - Divergence-free positive symmetric tensors and fluid dynamics JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1209 EP - 1234 VL - 35 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.11.002/ DO - 10.1016/j.anihpc.2017.11.002 LA - en ID - AIHPC_2018__35_5_1209_0 ER -
%0 Journal Article %A Serre, Denis %T Divergence-free positive symmetric tensors and fluid dynamics %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1209-1234 %V 35 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.11.002/ %R 10.1016/j.anihpc.2017.11.002 %G en %F AIHPC_2018__35_5_1209_0
Serre, Denis. Divergence-free positive symmetric tensors and fluid dynamics. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1209-1234. doi: 10.1016/j.anihpc.2017.11.002
Cité par Sources :