Voir la notice de l'article provenant de la source Numdam
The object of this paper is to study estimates of for small . Here is the Wasserstein metric on positive measures, , μ is a probability measure and ν a signed, neutral measure (). In [16] we proved uniform (in ϵ) estimates for provided can be controlled in terms of , for any smooth function ϕ.
In this paper we extend the results to the case where such a control fails. This is the case where, e.g., μ has a disconnected support, or the dimension d of μ (to be defined) is larger or equal to .
In the latter case we get such an estimate provided for . If we get a log-Lipschitz estimate.
As an application we obtain Hölder estimates in for curves of probability measures which are absolutely continuous in the total variation norm.
In case the support of μ is disconnected (corresponding to ) we obtain sharp estimates for (“optimal teleportation”):
@article{AIHPC_2017__34_7_1669_0,
author = {Wolansky, G.},
title = {From optimal transportation to optimal teleportation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {1669--1685},
publisher = {Elsevier},
volume = {34},
number = {7},
year = {2017},
doi = {10.1016/j.anihpc.2016.12.003},
mrnumber = {3724752},
zbl = {1379.49042},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.003/}
}
TY - JOUR AU - Wolansky, G. TI - From optimal transportation to optimal teleportation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1669 EP - 1685 VL - 34 IS - 7 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.003/ DO - 10.1016/j.anihpc.2016.12.003 LA - en ID - AIHPC_2017__34_7_1669_0 ER -
%0 Journal Article %A Wolansky, G. %T From optimal transportation to optimal teleportation %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1669-1685 %V 34 %N 7 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.003/ %R 10.1016/j.anihpc.2016.12.003 %G en %F AIHPC_2017__34_7_1669_0
Wolansky, G. From optimal transportation to optimal teleportation. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1669-1685. doi: 10.1016/j.anihpc.2016.12.003
Cité par Sources :