From optimal transportation to optimal teleportation
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1669-1685

Voir la notice de l'article provenant de la source Numdam

The object of this paper is to study estimates of ϵqWp(μ+ϵν,μ) for small ϵ>0. Here Wp is the Wasserstein metric on positive measures, p>1, μ is a probability measure and ν a signed, neutral measure (dν=0). In [16] we proved uniform (in ϵ) estimates for q=1 provided ϕdν can be controlled in terms of |ϕ|p/(p1)dμ, for any smooth function ϕ.

In this paper we extend the results to the case where such a control fails. This is the case where, e.g., μ has a disconnected support, or the dimension d of μ (to be defined) is larger or equal to p/(p1).

In the latter case we get such an estimate provided 1/p+1/d1 for q=min(1,1/p+1/d). If 1/p+1/d=1 we get a log-Lipschitz estimate.

As an application we obtain Hölder estimates in Wp for curves of probability measures which are absolutely continuous in the total variation norm.

In case the support of μ is disconnected (corresponding to d=) we obtain sharp estimates for q=1/p (“optimal teleportation”):

limϵ0ϵ1/pWp(μ,μ+ϵν)=νμ
where νμ is expressed in terms of optimal transport on a metric graph, determined only by the relative distances between the connected components of the support of μ, and the weights of the measure ν in each connected component of this support.

DOI : 10.1016/j.anihpc.2016.12.003
Keywords: Optimal transport, Monge–Kantorovich, Wasserstein metric
@article{AIHPC_2017__34_7_1669_0,
     author = {Wolansky, G.},
     title = {From optimal transportation to optimal teleportation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1669--1685},
     publisher = {Elsevier},
     volume = {34},
     number = {7},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.12.003},
     mrnumber = {3724752},
     zbl = {1379.49042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.003/}
}
TY  - JOUR
AU  - Wolansky, G.
TI  - From optimal transportation to optimal teleportation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1669
EP  - 1685
VL  - 34
IS  - 7
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.003/
DO  - 10.1016/j.anihpc.2016.12.003
LA  - en
ID  - AIHPC_2017__34_7_1669_0
ER  - 
%0 Journal Article
%A Wolansky, G.
%T From optimal transportation to optimal teleportation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1669-1685
%V 34
%N 7
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.003/
%R 10.1016/j.anihpc.2016.12.003
%G en
%F AIHPC_2017__34_7_1669_0
Wolansky, G. From optimal transportation to optimal teleportation. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1669-1685. doi: 10.1016/j.anihpc.2016.12.003

Cité par Sources :