Radial and bifurcating non-radial solutions for a singular perturbation problem in the case of exchange of stabilities
Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 2, pp. 131-170

Voir la notice de l'article provenant de la source Numdam

We consider the singular perturbation problem -ϵ 2 Δu+(u-a(|x|))(u-b(|x|))=0 in the unit ball of N , N1, under Neumann boundary conditions. The assumption that a(r)-b(r) changes sign in (0,1), known as the case of exchange of stabilities, is the main source of difficulty. More precisely, under the assumption that a-b has one simple zero in (0,1), we prove the existence of two radial solutions u + and u - that converge uniformly to max {a,b}, as ϵ0. The solution u + is asymptotically stable, whereas u - has Morse index one, in the radial class. If N2, we prove that the Morse index of u - , in the general class, is asymptotically given by [c+o(1)]ϵ -2 3(N-1) as ϵ0, with c>0 a certain positive constant. Furthermore, we prove the existence of a decreasing sequence of ϵ k >0, with ϵ k 0 as k+, such that non-radial solutions bifurcate from the unstable branch {(u - (ϵ),ϵ),ϵ>0} at ϵ=ϵ k , k=1,2,. Our approach is perturbative, based on the existence and non-degeneracy of solutions of a “limit” problem. Moreover, our method of proof can be generalized to treat, in a unified manner, problems of the same nature where the singular limit is continuous but non-smooth.

DOI : 10.1016/j.anihpc.2011.09.005
Classification : 35J25, 35J20, 35B33, 35B40
Keywords: Corner layer, Exchange of stabilities, Geometric singular perturbation theory, Non-radial bifurcations
@article{AIHPC_2012__29_2_131_0,
     author = {Karali, Georgia and Sourdis, Christos},
     title = {Radial and bifurcating non-radial solutions for a singular perturbation problem in the case of exchange of stabilities},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {131--170},
     publisher = {Elsevier},
     volume = {29},
     number = {2},
     year = {2012},
     doi = {10.1016/j.anihpc.2011.09.005},
     zbl = {1242.35114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.09.005/}
}
TY  - JOUR
AU  - Karali, Georgia
AU  - Sourdis, Christos
TI  - Radial and bifurcating non-radial solutions for a singular perturbation problem in the case of exchange of stabilities
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2012
SP  - 131
EP  - 170
VL  - 29
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.09.005/
DO  - 10.1016/j.anihpc.2011.09.005
LA  - en
ID  - AIHPC_2012__29_2_131_0
ER  - 
%0 Journal Article
%A Karali, Georgia
%A Sourdis, Christos
%T Radial and bifurcating non-radial solutions for a singular perturbation problem in the case of exchange of stabilities
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 131-170
%V 29
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.09.005/
%R 10.1016/j.anihpc.2011.09.005
%G en
%F AIHPC_2012__29_2_131_0
Karali, Georgia; Sourdis, Christos. Radial and bifurcating non-radial solutions for a singular perturbation problem in the case of exchange of stabilities. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 2, pp. 131-170. doi: 10.1016/j.anihpc.2011.09.005

Cité par Sources :