Partial flag varieties and preprojective algebras
[Variétés de drapeaux partiels et algèbres préprojectives]
Annales de l'Institut Fourier, Tome 58 (2008) no. 3, pp. 825-876

Voir la notice de l'article provenant de la source Numdam

Let Λ be a preprojective algebra of type A,D,E, and let G be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories Sub Q for Q an injective Λ-module, and we introduce a mutation operation between complete rigid modules in Sub Q. This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to G.

Soit Λ une algèbre préprojective de type A,D,E, et soit G le groupe algébrique complexe semi-simple et simplement connexe correspondant. Nous étudions les modules rigides des sous-catégories Sub QQ désigne un Λ-module injectif, et nous introduisons une opération de mutation sur les modules rigides complets de Sub Q. Ceci conduit à des structures d’algèbre amassée sur les anneaux de coordonnées des variétés de drapeaux partiels associées à G.

DOI : 10.5802/aif.2371
Classification : 14M15, 16D90, 16G20, 16G70, 17B10, 20G05, 20G20, 20G42
Keywords: Flag variety, preprojective algebra, Frobenius category, rigid module, mutation, cluster algebra, semicanonical basis
Mots-clés : variété de drapeaux, algèbre préprojective, catégorie de Frobenius, module rigide, mutation, algèbre amassée, base semi-canonique

Geiß, Christof 1 ; Leclerc, Bernard 2 ; Schröer, Jan 3

1 Universidad Nacional Autónoma de México Instituto de Matemáticas 04510 México D.F. (México)
2 Université de Caen LMNO UMR 6139 14032 Caen cedex (France)
3 Universität Bonn Mathematisches Institut Beringstr. 1 53115 Bonn (Germany)
@article{AIF_2008__58_3_825_0,
     author = {Gei{\ss}, Christof and Leclerc, Bernard and Schr\"oer, Jan},
     title = {Partial flag varieties and preprojective algebras},
     journal = {Annales de l'Institut Fourier},
     pages = {825--876},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {3},
     year = {2008},
     doi = {10.5802/aif.2371},
     zbl = {1151.16009},
     mrnumber = {2427512},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.2371/}
}
TY  - JOUR
AU  - Geiß, Christof
AU  - Leclerc, Bernard
AU  - Schröer, Jan
TI  - Partial flag varieties and preprojective algebras
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 825
EP  - 876
VL  - 58
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.2371/
DO  - 10.5802/aif.2371
LA  - en
ID  - AIF_2008__58_3_825_0
ER  - 
%0 Journal Article
%A Geiß, Christof
%A Leclerc, Bernard
%A Schröer, Jan
%T Partial flag varieties and preprojective algebras
%J Annales de l'Institut Fourier
%D 2008
%P 825-876
%V 58
%N 3
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.2371/
%R 10.5802/aif.2371
%G en
%F AIF_2008__58_3_825_0
Geiß, Christof; Leclerc, Bernard; Schröer, Jan. Partial flag varieties and preprojective algebras. Annales de l'Institut Fourier, Tome 58 (2008) no. 3, pp. 825-876. doi: 10.5802/aif.2371

Cité par Sources :