Improved upper bounds for the number of points on curves over finite fields
[Améliorations des majorations pour le nombre de points des courbes sur un corps fini]
Annales de l'Institut Fourier, Tome 53 (2003) no. 6, pp. 1677-1737

Voir la notice de l'article provenant de la source Numdam

We give new arguments that improve the known upper bounds on the maximal number N q (g) of rational points of a curve of genus g over a finite field 𝔽 q , for a number of pairs (q,g). Given a pair (q,g) and an integer N, we determine the possible zeta functions of genus-g curves over 𝔽 q with N points, and then deduce properties of the curves from their zeta functions. In many cases we can show that a genus-g curve over 𝔽 q with N points must have a low-degree map to another curve over 𝔽 q , and often this is enough to give us a contradiction. In particular, we are able to provide eight previously unknown values of N q (g), namely: N 4 (5)=17, N 4 (10)=27, N 8 (9)=45, N 16 (4)=45, N 128 (4)=215, N 3 (6)=14, N 9 (10)=54, and N 27 (4)=64. Our arguments also allow us to give a non-computer-intensive proof of the recent result of Savitt that there are no genus-4 curves over 𝔽 8 having exactly 27 rational points. Furthermore, we show that there is an infinite sequence of q’s such that for every g with 0<g<log 2 q, the difference between the Weil-Serre bound on N q (g) and the actual value of N q (g) is at least g/2.

Grâce à de nouveaux arguments, nous améliorons les majorations connues du nombre maximal N q (g) de points rationnels sur une courbe de genre g définie sur un corps fini 𝔽 q , pour certains couples (q,g). En particulier, nous donnons huit valeurs de N q (g) qui étaient jusqu’à présent inconnues : N 4 (5)=17, N 4 (10)=27, N 8 (9)=45, N 16 (4)=45, N 128 (4)=215, N 3 (6)=14, N 9 (10)=54, et N 27 (4)=64. Nous redémontrons aussi, avec une utilisation minimale de l’ordinateur, un résultat de Savitt : il n’y a pas de courbe de genre 4 sur 𝔽 8 ayant exactement 27 points rationnels. Enfin, nous démontrons qu’il y a une infinité de q tels que pour tout g satisfaisant 0<g<log 2 q, la différence entre la borne de Weil-Serre de N q (g) et la valeur exacte de N q (g) est au moins égale à g/2.

DOI : 10.5802/aif.1990
Classification : 11G20, 14G05, 14G10, 14G15
Keywords: curve, rational point, zeta function, Weil bound, Serre bound, Oesterlé bound
Mots-clés : courbe, point rationnel, fonction zêta, borne de Weil, borne de Serre, borne d'Oesterlé

Howe, Everett W. 1 ; Lauter, Kristin E. 2

1 Center for Communications Research, 4320 Westerra Court, San Diego, CA 92121-1967 (USA)
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052 (USA)
@article{AIF_2003__53_6_1677_0,
     author = {Howe, Everett W. and Lauter, Kristin E.},
     title = {Improved upper bounds for the number of points on curves over finite fields},
     journal = {Annales de l'Institut Fourier},
     pages = {1677--1737},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {6},
     year = {2003},
     doi = {10.5802/aif.1990},
     mrnumber = {2038778},
     zbl = {1065.11043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1990/}
}
TY  - JOUR
AU  - Howe, Everett W.
AU  - Lauter, Kristin E.
TI  - Improved upper bounds for the number of points on curves over finite fields
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 1677
EP  - 1737
VL  - 53
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.1990/
DO  - 10.5802/aif.1990
LA  - en
ID  - AIF_2003__53_6_1677_0
ER  - 
%0 Journal Article
%A Howe, Everett W.
%A Lauter, Kristin E.
%T Improved upper bounds for the number of points on curves over finite fields
%J Annales de l'Institut Fourier
%D 2003
%P 1677-1737
%V 53
%N 6
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.1990/
%R 10.5802/aif.1990
%G en
%F AIF_2003__53_6_1677_0
Howe, Everett W.; Lauter, Kristin E. Improved upper bounds for the number of points on curves over finite fields. Annales de l'Institut Fourier, Tome 53 (2003) no. 6, pp. 1677-1737. doi: 10.5802/aif.1990

Cité par Sources :