Local convergence for a multi-point family of super-Halley methods in a Banach space under weak conditions
Applicationes Mathematicae, Tome 42 (2015) no. 2-3, pp. 193-203
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We present a local multi-point convergence analysis for a family of super-Halley methods of high convergence order in order to approximate a solution of a nonlinear equation in a Banach space. Our sufficient convergence conditions involve only hypotheses on the first and second Fréchet derivative of the operator involved. Earlier studies use hypotheses up to the third Fréchet derivative. Numerical examples are also provided.
DOI :
10.4064/am42-2-6
Keywords:
present local multi point convergence analysis family super halley methods high convergence order order approximate solution nonlinear equation banach space sufficient convergence conditions involve only hypotheses first second echet derivative operator involved earlier studies hypotheses third echet derivative numerical examples provided
Affiliations des auteurs :
Ioannis K. Argyros 1 ; Santhosh George 2
@article{10_4064_am42_2_6,
author = {Ioannis K. Argyros and Santhosh George},
title = {Local convergence for a multi-point family of {super-Halley} methods in a {Banach} space under weak conditions},
journal = {Applicationes Mathematicae},
pages = {193--203},
publisher = {mathdoc},
volume = {42},
number = {2-3},
year = {2015},
doi = {10.4064/am42-2-6},
zbl = {1334.65096},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am42-2-6/}
}
TY - JOUR AU - Ioannis K. Argyros AU - Santhosh George TI - Local convergence for a multi-point family of super-Halley methods in a Banach space under weak conditions JO - Applicationes Mathematicae PY - 2015 SP - 193 EP - 203 VL - 42 IS - 2-3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am42-2-6/ DO - 10.4064/am42-2-6 LA - en ID - 10_4064_am42_2_6 ER -
%0 Journal Article %A Ioannis K. Argyros %A Santhosh George %T Local convergence for a multi-point family of super-Halley methods in a Banach space under weak conditions %J Applicationes Mathematicae %D 2015 %P 193-203 %V 42 %N 2-3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am42-2-6/ %R 10.4064/am42-2-6 %G en %F 10_4064_am42_2_6
Ioannis K. Argyros; Santhosh George. Local convergence for a multi-point family of super-Halley methods in a Banach space under weak conditions. Applicationes Mathematicae, Tome 42 (2015) no. 2-3, pp. 193-203. doi: 10.4064/am42-2-6
Cité par Sources :