Uniform decompositions of polytopes
Applicationes Mathematicae, Tome 33 (2006) no. 2, pp. 243-252
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We design a method of decomposing convex polytopes into
simpler polytopes. This decomposition yields a way of calculating exactly the volume of the polytope, or, more
generally, multiple integrals over the polytope, which is
equivalent to the way suggested in Schechter, based on
Fourier–Motzkin elimination (Schrijver). Our
method is applicable for finding uniform decompositions of certain
natural families of polytopes. Moreover, this allows us to find
algorithmically an analytic expression for the distribution
function of a random variable of the form
$\sum_{i=1}^{d}c_{i}X_{i}$, where $(X_{1},\ldots ,X_{d})$ is a
random vector, uniformly distributed in a polytope.
DOI :
10.4064/am33-2-7
Mots-clés :
design method decomposing convex polytopes simpler polytopes decomposition yields calculating exactly volume polytope generally multiple integrals polytope which equivalent suggested schechter based fourier motzkin elimination schrijver method applicable finding uniform decompositions certain natural families polytopes moreover allows algorithmically analytic expression distribution function random variable form sum where ldots random vector uniformly distributed polytope
Affiliations des auteurs :
Daniel Berend 1 ; Luba Bromberg 2
@article{10_4064_am33_2_7,
author = {Daniel Berend and Luba Bromberg},
title = {Uniform decompositions of polytopes},
journal = {Applicationes Mathematicae},
pages = {243--252},
publisher = {mathdoc},
volume = {33},
number = {2},
year = {2006},
doi = {10.4064/am33-2-7},
zbl = {1112.65016},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am33-2-7/}
}
Daniel Berend; Luba Bromberg. Uniform decompositions of polytopes. Applicationes Mathematicae, Tome 33 (2006) no. 2, pp. 243-252. doi: 10.4064/am33-2-7
Cité par Sources :