On the equation $\varphi (|x^m-y^m|)=2^n$
Mathematica Bohemica, Tome 125 (2000) no. 4, pp. 465-479
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we investigate the solutions of the equation in the title, where $\phi$ is the Euler function. We first show that it suffices to find the solutions of the above equation when $m=4$ and $x$ and $y$ are coprime positive integers. For this last equation, we show that aside from a few small solutions, all the others are in a one-to-one correspondence with the Fermat primes.
DOI :
10.21136/MB.2000.126267
Classification :
11A25, 11A51, 11A63
Keywords: Euler function; Fermat primes
Keywords: Euler function; Fermat primes
@article{10_21136_MB_2000_126267,
author = {Luca, Florian},
title = {On the equation $\varphi (|x^m-y^m|)=2^n$},
journal = {Mathematica Bohemica},
pages = {465--479},
publisher = {mathdoc},
volume = {125},
number = {4},
year = {2000},
doi = {10.21136/MB.2000.126267},
mrnumber = {1802295},
zbl = {0966.11002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126267/}
}
Luca, Florian. On the equation $\varphi (|x^m-y^m|)=2^n$. Mathematica Bohemica, Tome 125 (2000) no. 4, pp. 465-479. doi: 10.21136/MB.2000.126267
Cité par Sources :