Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition
Applications of Mathematics, Tome 46 (2001) no. 2, pp. 103-144
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part $\Gamma \!_1$ of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand side by the explicit Euler method). The scheme we get is linear. The strong convergence of the method is proved under the assumptions that the boundary $\partial \Omega $ is piecewise of class $C^3$ and the initial condition belongs to $L_2$ only. Strong monotonicity and Lipschitz continuity of the form $a(v,w)$ is not an assumption, but a property of this form following from its physical background.
DOI :
10.1023/A:1013783722140
Classification :
35M10, 65M12, 65M60, 65N30, 78M10
Keywords: finite element method; parabolic-elliptic problems; two-dimensional electromagnetic field
Keywords: finite element method; parabolic-elliptic problems; two-dimensional electromagnetic field
@article{10_1023_A_1013783722140,
author = {\v{R}{\'\i}hov\'a-\v{S}kabrahov\'a, Dana},
title = {Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous {Dirichlet} boundary condition},
journal = {Applications of Mathematics},
pages = {103--144},
publisher = {mathdoc},
volume = {46},
number = {2},
year = {2001},
doi = {10.1023/A:1013783722140},
mrnumber = {1818081},
zbl = {1066.65117},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1013783722140/}
}
TY - JOUR AU - Říhová-Škabrahová, Dana TI - Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition JO - Applications of Mathematics PY - 2001 SP - 103 EP - 144 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1013783722140/ DO - 10.1023/A:1013783722140 LA - en ID - 10_1023_A_1013783722140 ER -
%0 Journal Article %A Říhová-Škabrahová, Dana %T Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition %J Applications of Mathematics %D 2001 %P 103-144 %V 46 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1023/A:1013783722140/ %R 10.1023/A:1013783722140 %G en %F 10_1023_A_1013783722140
Říhová-Škabrahová, Dana. Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition. Applications of Mathematics, Tome 46 (2001) no. 2, pp. 103-144. doi: 10.1023/A:1013783722140
Cité par Sources :