Two identities related to Dirichlet character of polynomials
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 281-288
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $q$ be a positive integer, $\chi $ denote any Dirichlet character $\mod q$. For any integer $m$ with $(m, q)=1$, we define a sum $C(\chi, k, m; q)$ analogous to high-dimensional Kloosterman sums as follows: $$ C(\chi, k, m; q)=\sum _{a_1=1}^{q}{}' \sum _{a_2=1}^{q}{}' \cdots \sum _{a_k=1}^{q}{}' \chi (a_1+a_2+\cdots +a_k+m\overline {a_1a_2\cdots a_k}), $$ where $a\cdot \overline {a}\equiv 1\bmod q$. The main purpose of this paper is to use elementary methods and properties of Gauss sums to study the computational problem of the absolute value $|C(\chi, k, m; q)|$, and give two interesting identities for it.
DOI :
10.1007/s10587-013-0018-0
Classification :
11L05, 11L40
Keywords: Dirichlet character of polynomials; sum analogous to Kloosterman sum; identity; Gauss sum
Keywords: Dirichlet character of polynomials; sum analogous to Kloosterman sum; identity; Gauss sum
@article{10_1007_s10587_013_0018_0,
author = {Yao, Weili and Zhang, Wenpeng},
title = {Two identities related to {Dirichlet} character of polynomials},
journal = {Czechoslovak Mathematical Journal},
pages = {281--288},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {2013},
doi = {10.1007/s10587-013-0018-0},
mrnumber = {3035511},
zbl = {1274.11126},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0018-0/}
}
TY - JOUR AU - Yao, Weili AU - Zhang, Wenpeng TI - Two identities related to Dirichlet character of polynomials JO - Czechoslovak Mathematical Journal PY - 2013 SP - 281 EP - 288 VL - 63 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0018-0/ DO - 10.1007/s10587-013-0018-0 LA - en ID - 10_1007_s10587_013_0018_0 ER -
%0 Journal Article %A Yao, Weili %A Zhang, Wenpeng %T Two identities related to Dirichlet character of polynomials %J Czechoslovak Mathematical Journal %D 2013 %P 281-288 %V 63 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0018-0/ %R 10.1007/s10587-013-0018-0 %G en %F 10_1007_s10587_013_0018_0
Yao, Weili; Zhang, Wenpeng. Two identities related to Dirichlet character of polynomials. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 281-288. doi: 10.1007/s10587-013-0018-0
Cité par Sources :