On the heights of power digraphs modulo $n$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 541-556
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A power digraph, denoted by $G(n,k)$, is a directed graph with $\mathbb Z_{n}=\{0,1,\dots ,n-1\}$ as the set of vertices and $E=\{(a,b)\colon a^{k}\equiv b\pmod n\}$ as the edge set. In this paper we extend the work done by Lawrence Somer and Michal Křížek: On a connection of number theory with graph theory, Czech. Math. J. 54 (2004), 465–485, and Lawrence Somer and Michal Křížek: Structure of digraphs associated with quadratic congruences with composite moduli, Discrete Math. 306 (2006), 2174–2185. The heights of the vertices and the components of $G(n,k)$ for $n\geq 1$ and $k\geq 2$ are determined. We also find an expression for the number of vertices at a specific height. Finally, we obtain necessary and sufficient conditions on $n$ such that each vertex of indegree $0$ of a certain subdigraph of $G(n,k)$ is at height $q\geq 1$.
DOI :
10.1007/s10587-012-0028-3
Classification :
05C20, 11A07, 11A15, 20K01
Keywords: iteration digraph; height; Carmichael lambda function; fixed point; regular digraph
Keywords: iteration digraph; height; Carmichael lambda function; fixed point; regular digraph
@article{10_1007_s10587_012_0028_3,
author = {Ahmad, Uzma and Syed, Husnine},
title = {On the heights of power digraphs modulo $n$},
journal = {Czechoslovak Mathematical Journal},
pages = {541--556},
publisher = {mathdoc},
volume = {62},
number = {2},
year = {2012},
doi = {10.1007/s10587-012-0028-3},
mrnumber = {2990193},
zbl = {1265.05274},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0028-3/}
}
TY - JOUR AU - Ahmad, Uzma AU - Syed, Husnine TI - On the heights of power digraphs modulo $n$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 541 EP - 556 VL - 62 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0028-3/ DO - 10.1007/s10587-012-0028-3 LA - en ID - 10_1007_s10587_012_0028_3 ER -
%0 Journal Article %A Ahmad, Uzma %A Syed, Husnine %T On the heights of power digraphs modulo $n$ %J Czechoslovak Mathematical Journal %D 2012 %P 541-556 %V 62 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0028-3/ %R 10.1007/s10587-012-0028-3 %G en %F 10_1007_s10587_012_0028_3
Ahmad, Uzma; Syed, Husnine. On the heights of power digraphs modulo $n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 541-556. doi: 10.1007/s10587-012-0028-3
Cité par Sources :