Hyperbolic boundary value problem with equivalued surface on a domain with thin layer
Applications of Mathematics, Tome 54 (2009) no. 4, pp. 351-375
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper deals with a kind of hyperbolic boundary value problems with equivalued surface on a domain with thin layer. Existence and uniqueness of solutions are given, and the limit behavior of solutions is studied in this paper.
DOI :
10.1007/s10492-009-0022-8
Classification :
35A01, 35A02, 35A05, 35B40, 35L20
Keywords: limit behavior of solutions; existence; uniqueness; equivalued surface; equivalued interface; hyperbolic equation
Keywords: limit behavior of solutions; existence; uniqueness; equivalued surface; equivalued interface; hyperbolic equation
@article{10_1007_s10492_009_0022_8,
author = {Li, Fengquan and Sun, Weiwei},
title = {Hyperbolic boundary value problem with equivalued surface on a domain with thin layer},
journal = {Applications of Mathematics},
pages = {351--375},
publisher = {mathdoc},
volume = {54},
number = {4},
year = {2009},
doi = {10.1007/s10492-009-0022-8},
mrnumber = {2520835},
zbl = {1212.35013},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0022-8/}
}
TY - JOUR AU - Li, Fengquan AU - Sun, Weiwei TI - Hyperbolic boundary value problem with equivalued surface on a domain with thin layer JO - Applications of Mathematics PY - 2009 SP - 351 EP - 375 VL - 54 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0022-8/ DO - 10.1007/s10492-009-0022-8 LA - en ID - 10_1007_s10492_009_0022_8 ER -
%0 Journal Article %A Li, Fengquan %A Sun, Weiwei %T Hyperbolic boundary value problem with equivalued surface on a domain with thin layer %J Applications of Mathematics %D 2009 %P 351-375 %V 54 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0022-8/ %R 10.1007/s10492-009-0022-8 %G en %F 10_1007_s10492_009_0022_8
Li, Fengquan; Sun, Weiwei. Hyperbolic boundary value problem with equivalued surface on a domain with thin layer. Applications of Mathematics, Tome 54 (2009) no. 4, pp. 351-375. doi: 10.1007/s10492-009-0022-8
Cité par Sources :