On the Colength of Fractional Ideals
Journal of Singularities, Tome 21 (2020), pp. 119-131

Voir la notice de l'article provenant de la source Journal of Singularities website

The main goal of this paper is to give a recursive formula for the colength of a fractional ideal in terms of some maximal points of its value set and of its projections. The fractional ideals are relative to a class of rings called admissible, a more general class of one dimensional local rings that contains those of algebroid curves. For fractional ideals of such rings with two or three minimal primes, a closed formula for the colength is provided.
DOI : 10.5427/jsing.2020.21g
Classification : 13H10, 14H20
@article{10_5427_jsing_2020_21g,
     author = {E. M. N. de Guzm\'an and A. Hefez},
     title = {On the {Colength} of {Fractional} {Ideals}},
     journal = {Journal of Singularities},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {21},
     year = {2020},
     doi = {10.5427/jsing.2020.21g},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.21g/}
}
TY  - JOUR
AU  - E. M. N. de Guzmán
AU  - A. Hefez
TI  - On the Colength of Fractional Ideals
JO  - Journal of Singularities
PY  - 2020
SP  - 119
EP  - 131
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.21g/
DO  - 10.5427/jsing.2020.21g
ID  - 10_5427_jsing_2020_21g
ER  - 
%0 Journal Article
%A E. M. N. de Guzmán
%A A. Hefez
%T On the Colength of Fractional Ideals
%J Journal of Singularities
%D 2020
%P 119-131
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.21g/
%R 10.5427/jsing.2020.21g
%F 10_5427_jsing_2020_21g
E. M. N. de Guzmán; A. Hefez. On the Colength of Fractional Ideals. Journal of Singularities, Tome 21 (2020), pp. 119-131. doi: 10.5427/jsing.2020.21g

Cité par Sources :