Fronts of control-affine systems in R^3
Journal of Singularities, Tome 21 (2020), pp. 15-29

Voir la notice de l'article provenant de la source Journal of Singularities website

We consider a control-affine system in three-dimensional space with control parameters belonging to a two-dimensional disk and study its fronts evolving from a point for small times. We prove that generically the Legendrian lifts of such fronts have standard singularities and there are only two principally different typical cases --- hyperbolic and elliptic.
@article{10_5427_jsing_2020_21b,
     author = {Ilya Bogaevsky},
     title = {Fronts of control-affine systems in {R^3}},
     journal = {Journal of Singularities},
     pages = {15--29},
     publisher = {mathdoc},
     volume = {21},
     year = {2020},
     doi = {10.5427/jsing.2020.21b},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.21b/}
}
TY  - JOUR
AU  - Ilya Bogaevsky
TI  - Fronts of control-affine systems in R^3
JO  - Journal of Singularities
PY  - 2020
SP  - 15
EP  - 29
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.21b/
DO  - 10.5427/jsing.2020.21b
ID  - 10_5427_jsing_2020_21b
ER  - 
%0 Journal Article
%A Ilya Bogaevsky
%T Fronts of control-affine systems in R^3
%J Journal of Singularities
%D 2020
%P 15-29
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.21b/
%R 10.5427/jsing.2020.21b
%F 10_5427_jsing_2020_21b
Ilya Bogaevsky. Fronts of control-affine systems in R^3. Journal of Singularities, Tome 21 (2020), pp. 15-29. doi: 10.5427/jsing.2020.21b

Cité par Sources :