The flat geometry of the I_1 singularity: (x,y) -> (x,xy,y^2,y^3)
Journal of Singularities, Tome 21 (2020), pp. 1-14

Voir la notice de l'article provenant de la source Journal of Singularities website

We study the flat geometry of the least degenerate singularity of a singular surface in R^4, the I_1 singularity parametrised by (x,y)->(x,xy,y^2,y^3). This singularity appears generically when projecting a regular surface in R^5 orthogonally to R^4 along a tangent direction. We obtain a generic normal form for I_1 invariant under diffeomorphisms in the source and isometries in the target. We then consider the contact with hyperplanes by classifying submersions which preserve the image of I_1. The main tool is the study of the singularities of the height function.
DOI : 10.5427/jsing.2020.21a
Classification : 57R45, 53A05, 58K05
@misc{10_5427_jsing_2020_21a,
     title = {The flat geometry of the {I_1} singularity: (x,y) -> (x,xy,y^2,y^3)},
     journal = {Journal of Singularities},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {21},
     year = {2020},
     doi = {10.5427/jsing.2020.21a},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.21a/}
}
TY  - JOUR
TI  - The flat geometry of the I_1 singularity: (x,y) -> (x,xy,y^2,y^3)
JO  - Journal of Singularities
PY  - 2020
SP  - 1
EP  - 14
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.21a/
DO  - 10.5427/jsing.2020.21a
ID  - 10_5427_jsing_2020_21a
ER  - 
%0 Journal Article
%T The flat geometry of the I_1 singularity: (x,y) -> (x,xy,y^2,y^3)
%J Journal of Singularities
%D 2020
%P 1-14
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.21a/
%R 10.5427/jsing.2020.21a
%F 10_5427_jsing_2020_21a
The flat geometry of the I_1 singularity: (x,y) -> (x,xy,y^2,y^3). Journal of Singularities, Tome 21 (2020), pp. 1-14. doi: 10.5427/jsing.2020.21a

Cité par Sources :