Equisingular algebraic approximation of real and complex analytic germs
Journal of Singularities, Tome 20 (2020), pp. 289-310

Voir la notice de l'article provenant de la source Journal of Singularities website

We show that a Cohen-Macaulay analytic singularity can be arbitrarily closely approximated by Nash germs which are also Cohen-Macaulay and share the same Hilbert-Samuel function. We also prove that every analytic singularity is topologically equivalent to a Nash singularity with the same Hilbert-Samuel function.
DOI : 10.5427/jsing.2020.20n
Classification : 32S05, 32S10, 32B99, 32C07, 14P15, 14P20, 13H10, 13C14
@article{10_5427_jsing_2020_20n,
     author = {Janusz Adamus and Aftab Patel},
     title = {Equisingular algebraic approximation of real and complex analytic germs},
     journal = {Journal of Singularities},
     pages = {289--310},
     publisher = {mathdoc},
     volume = {20},
     year = {2020},
     doi = {10.5427/jsing.2020.20n},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20n/}
}
TY  - JOUR
AU  - Janusz Adamus
AU  - Aftab Patel
TI  - Equisingular algebraic approximation of real and complex analytic germs
JO  - Journal of Singularities
PY  - 2020
SP  - 289
EP  - 310
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20n/
DO  - 10.5427/jsing.2020.20n
ID  - 10_5427_jsing_2020_20n
ER  - 
%0 Journal Article
%A Janusz Adamus
%A Aftab Patel
%T Equisingular algebraic approximation of real and complex analytic germs
%J Journal of Singularities
%D 2020
%P 289-310
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20n/
%R 10.5427/jsing.2020.20n
%F 10_5427_jsing_2020_20n
Janusz Adamus; Aftab Patel. Equisingular algebraic approximation of real and complex analytic germs. Journal of Singularities, Tome 20 (2020), pp. 289-310. doi: 10.5427/jsing.2020.20n

Cité par Sources :