Equisingular algebraic approximation of real and complex analytic germs
Journal of Singularities, Tome 20 (2020), pp. 289-310
Voir la notice de l'article provenant de la source Journal of Singularities website
We show that a Cohen-Macaulay analytic singularity can be arbitrarily closely approximated by Nash germs which are also Cohen-Macaulay and share the same Hilbert-Samuel function. We also prove that every analytic singularity is topologically equivalent to a Nash singularity with the same Hilbert-Samuel function.
Classification :
32S05, 32S10, 32B99, 32C07, 14P15, 14P20, 13H10, 13C14
@article{10_5427_jsing_2020_20n,
author = {Janusz Adamus and Aftab Patel},
title = {Equisingular algebraic approximation of real and complex analytic germs},
journal = {Journal of Singularities},
pages = {289--310},
publisher = {mathdoc},
volume = {20},
year = {2020},
doi = {10.5427/jsing.2020.20n},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20n/}
}
TY - JOUR AU - Janusz Adamus AU - Aftab Patel TI - Equisingular algebraic approximation of real and complex analytic germs JO - Journal of Singularities PY - 2020 SP - 289 EP - 310 VL - 20 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20n/ DO - 10.5427/jsing.2020.20n ID - 10_5427_jsing_2020_20n ER -
%0 Journal Article %A Janusz Adamus %A Aftab Patel %T Equisingular algebraic approximation of real and complex analytic germs %J Journal of Singularities %D 2020 %P 289-310 %V 20 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20n/ %R 10.5427/jsing.2020.20n %F 10_5427_jsing_2020_20n
Janusz Adamus; Aftab Patel. Equisingular algebraic approximation of real and complex analytic germs. Journal of Singularities, Tome 20 (2020), pp. 289-310. doi: 10.5427/jsing.2020.20n
Cité par Sources :