Combinatorially determined zeroes of Bernstein--Sato ideals for tame and free arrangements
Journal of Singularities, Tome 20 (2020), pp. 165-204
Voir la notice de l'article provenant de la source Journal of Singularities website
For a central, not necessarily reduced, hyperplane arrangement f equipped with any factorization f = f_1 ... f_r and for f' dividing f, we consider a more general type of Bernstein--Sato ideal consisting of the polynomials B(S) \in C[s_1, ..., s_r] satisfying the functional equation B(S)f' f_1^{s_1}...f_r^{s_r} \in A_n(C)[s_1,..., s_r] f_1^{s_1 + 1}...f_{r}^{s_r + 1}.
@article{10_5427_jsing_2020_20h,
author = {Daniel Bath},
title = {Combinatorially determined zeroes of {Bernstein--Sato} ideals for tame and free arrangements},
journal = {Journal of Singularities},
pages = {165--204},
publisher = {mathdoc},
volume = {20},
year = {2020},
doi = {10.5427/jsing.2020.20h},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20h/}
}
TY - JOUR AU - Daniel Bath TI - Combinatorially determined zeroes of Bernstein--Sato ideals for tame and free arrangements JO - Journal of Singularities PY - 2020 SP - 165 EP - 204 VL - 20 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20h/ DO - 10.5427/jsing.2020.20h ID - 10_5427_jsing_2020_20h ER -
%0 Journal Article %A Daniel Bath %T Combinatorially determined zeroes of Bernstein--Sato ideals for tame and free arrangements %J Journal of Singularities %D 2020 %P 165-204 %V 20 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20h/ %R 10.5427/jsing.2020.20h %F 10_5427_jsing_2020_20h
Daniel Bath. Combinatorially determined zeroes of Bernstein--Sato ideals for tame and free arrangements. Journal of Singularities, Tome 20 (2020), pp. 165-204. doi: 10.5427/jsing.2020.20h
Cité par Sources :