Combinatorially determined zeroes of Bernstein--Sato ideals for tame and free arrangements
Journal of Singularities, Tome 20 (2020), pp. 165-204

Voir la notice de l'article provenant de la source Journal of Singularities website

For a central, not necessarily reduced, hyperplane arrangement f equipped with any factorization f = f_1 ... f_r and for f' dividing f, we consider a more general type of Bernstein--Sato ideal consisting of the polynomials B(S) \in C[s_1, ..., s_r] satisfying the functional equation B(S)f' f_1^{s_1}...f_r^{s_r} \in A_n(C)[s_1,..., s_r] f_1^{s_1 + 1}...f_{r}^{s_r + 1}.
DOI : 10.5427/jsing.2020.20h
Classification : :14F10, :32S40, 32S05, 32S22, 32C38
@article{10_5427_jsing_2020_20h,
     author = {Daniel Bath},
     title = {Combinatorially determined zeroes of {Bernstein--Sato} ideals for tame and free arrangements},
     journal = {Journal of Singularities},
     pages = {165--204},
     publisher = {mathdoc},
     volume = {20},
     year = {2020},
     doi = {10.5427/jsing.2020.20h},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20h/}
}
TY  - JOUR
AU  - Daniel Bath
TI  - Combinatorially determined zeroes of Bernstein--Sato ideals for tame and free arrangements
JO  - Journal of Singularities
PY  - 2020
SP  - 165
EP  - 204
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20h/
DO  - 10.5427/jsing.2020.20h
ID  - 10_5427_jsing_2020_20h
ER  - 
%0 Journal Article
%A Daniel Bath
%T Combinatorially determined zeroes of Bernstein--Sato ideals for tame and free arrangements
%J Journal of Singularities
%D 2020
%P 165-204
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20h/
%R 10.5427/jsing.2020.20h
%F 10_5427_jsing_2020_20h
Daniel Bath. Combinatorially determined zeroes of Bernstein--Sato ideals for tame and free arrangements. Journal of Singularities, Tome 20 (2020), pp. 165-204. doi: 10.5427/jsing.2020.20h

Cité par Sources :