The Generic Rank of the Baum-Bott Map for Degree-2 Foliations on Even-Dimensional Projective Spaces
Journal of Singularities, Tome 20 (2020), pp. 103-127

Voir la notice de l'article provenant de la source Journal of Singularities website

The Baum-Bott map associates to a one-dimensional foliation on a complex manifold its Baum-Bott indexes at each singular point. The generic rank of this map on the space of foliations on the projective plane is known. In this work, we give an upper bound of the generic rank of the map for higher-dimensional projective spaces. We also determine the generic rank for degree-2 foliations on higher even-dimensional projective spaces. Additionally, we study the rank at the Jouanolou foliation.
DOI : 10.5427/jsing.2020.20f
Classification : 37F75
@article{10_5427_jsing_2020_20f,
     author = {Midory Komatsudani-Quispe},
     title = {The {Generic} {Rank} of the {Baum-Bott} {Map} for {Degree-2} {Foliations} on {Even-Dimensional} {Projective} {Spaces}},
     journal = {Journal of Singularities},
     pages = {103--127},
     publisher = {mathdoc},
     volume = {20},
     year = {2020},
     doi = {10.5427/jsing.2020.20f},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20f/}
}
TY  - JOUR
AU  - Midory Komatsudani-Quispe
TI  - The Generic Rank of the Baum-Bott Map for Degree-2 Foliations on Even-Dimensional Projective Spaces
JO  - Journal of Singularities
PY  - 2020
SP  - 103
EP  - 127
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20f/
DO  - 10.5427/jsing.2020.20f
ID  - 10_5427_jsing_2020_20f
ER  - 
%0 Journal Article
%A Midory Komatsudani-Quispe
%T The Generic Rank of the Baum-Bott Map for Degree-2 Foliations on Even-Dimensional Projective Spaces
%J Journal of Singularities
%D 2020
%P 103-127
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.20f/
%R 10.5427/jsing.2020.20f
%F 10_5427_jsing_2020_20f
Midory Komatsudani-Quispe. The Generic Rank of the Baum-Bott Map for Degree-2 Foliations on Even-Dimensional Projective Spaces. Journal of Singularities, Tome 20 (2020), pp. 103-127. doi: 10.5427/jsing.2020.20f

Cité par Sources :